OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b)

Students often turn to ISC Mathematics Class 11 OP Malhotra Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) to clarify doubts and improve problem-solving skills.

S Chand Class 11 ICSE Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b)

Question 1.
Find the coordinates of the points which divide the join of the points (2, -1, 3) and (4, 3, 1) in the ratio 3 : 4 internally.
Solution:
Let R be the point which divides the join of points A(2, -1, 3) and B(4, 3, 1) in the ratio 3 : 4 internally.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 1

Question 2.
Find the coordinates of the points which divide the line joining the points (2, -4, 3), (-4, 5, -6) in the ratio
(i) 1 : -4
(ii) 2 : 1
Solution:
(i) Let the point P divides the line segment AB in ratio 1 :-4
Then coordinates of P are
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 2

Question 3.
Find the ratio in which the line joining the points (2, 4, 5),(3, 5, -4) is divided by the yz-plane.
Solution:
Let the point P divides the line segment joining A(2, 4, 5) and B(3, 5, -4) in the ratio k : 1
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 3
Since the line joining AB is divided by yz – plane
i.e. x-coordinates of point P is 0 .
\(\frac{3 k+2}{k+1}\) = 0
⇒ k = –\(\frac{2}{3}\)
Thus required ratio be k : 1 i.e. –\(\frac{2}{3}\) : 1 i.e. – 2 : 3.

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b)

Question 4.
The three points A(0, 0, 0), B(2, -3, 3), C(-2, 3, -3) are collinear. Find in what ratio each point divides the segment joining the other two.
Solution:
Let the point B (2, -3, 3) divides the line segment AC in the ratio k : 1 internally.
Then by section formula, we have
The coordinates of B are
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 4
∴ \( \frac{-2 k}{k+1}\) = 2
⇒ – 2k = 2k + 2
⇒ 4k = – 2
⇒ k = \(\frac{-1}{2}\)
and \(\frac{3 k}{k+1}\) = – 3
⇒ 3k = -3 k – 3
⇒ 6 k = – 3
⇒ k =-\(\frac{1}{2}\)
and \(\frac{-3 k}{k+1}\) = 3
⇒ – 3k = 3k + 3
⇒ k = –\(\frac{1}{2}\)
Thus the required ratio be k : 1 i.e. – 1 : 2.
Let the point C(-2, 3, -3) divides AB in the ratio λ : 1.
Then coordinates of C are
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 5
\(\frac{2 \lambda}{\lambda+1}\) = – 2 ⇒ 2λ = – 2λ – 2 ⇒ λ = –\(\frac { 1 }{ 2 }\)
\(\frac{-3 \lambda}{\lambda+1}\) = 3 ⇒ -3λ = 3λ + 3 ⇒ λ = –\(\frac { 1 }{ 2 }\)
and \(\frac{3 \lambda}{\lambda+1}\) = – 3 ⇒ 6λ = – 3
Thus required ratio be λ : 1 i.e. -1 : 2. Let the point A(0, 0, 0) divides line segment BC in the ratio p : 1.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 6

Question 5.
Find the coordinates of the points which trisect AB given that A(2, 1, -3) and B (5, -8, 3).
Solution:
Let P and Q be the point of trisection of line segment AB.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 7
Thus point P divides the line segment AB in the ratio 1 : 2.
Then coordinates of P are
\(\left(\frac{5+4}{1+2}, \frac{-8+2}{1+2}, \frac{3-6}{1+2}\right)\) i.e. P(3, -2, -1)
Also, point Q divides the line segment AB in the ratio 2 : 1.
Then coordinates of $\mathrm{Q}$ are
\(\left(\frac{10+2}{2+1}, \frac{-16+1}{2+1}, \frac{6-3}{2+1}\right)\) i.e. Q(4, -5, 1).

Question 6.
Find the coordinates of the point which is three-fifths of the way from (3, 4, 5) to (-2, -1, 0).
Solution:
Let the given points are A(3, 4, 5) and E(-2, -1, 0) and let point P is at \(\frac{3}{5}\)th of the way from A.
∴ P is at a \(\frac{2}{5}\)th of the way from B i.e. p divides line segment AB in the ratio 3 : 2.
Then by section formula, we have
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 8
Thus, the coordinates of point P are (0, 1, 2).

Question 7.
Show that the point (1, -1, 2) is common to the lines which join (6, -7), 0) to (16, -19, -4) and (0, 3, -6) to (2, -5, 10).
Solution:
Any point on line segment AB be
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 9
If AB and CD have a common point. Then P and Q coincide for some values of k and k’.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 10
Thus eqns. (1), (2) and (3) are satisfied or consistent for k = \(\frac{-1}{3}\) and k’ = 1
putting k = \(\frac{-1}{3}\) in coordinates of P
we get, the required point be (1, -1, 2). Hence, the point P(1, -1, 2) is common to lines which join A(6, – 7, 0)
and B(16, -19, -4) and C(0, 3, -6) and D(2, -5, 10).

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b)

Question 8.
Find the lengths of the medians of the triangle whose vertices are A(2, -3, 1), B (-6, 5, 3), C (8, 7, – 7).
Solution:
Let D, E and F are the mid-points of sides BC, CA and AB of △ABC.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 11

Question 9.
Find the point of intersection of the medians of the triangle with vertices (-1, -3, -4), (4, -2, -7), (2, 3, -8).
Solution:
Let the vertices of △ABC are A(-1, -3, -4); B(4, -2, -7) and C(2, 3, -8)
We know that the point of intersection of all medians of a triangle is called centroid of triangle.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 12

Question 10.
Find the ratio in which the join of A(2, 1, 5) and B(3, 4, 3) is divided by the plane 2x + 2y – 2z = 1. Also, find the coordinates of the point of division.
Solution:
Let the point R divides the line segment PQ in the ratio k : 1 internally.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 13
Then by section formula, we have coordinates of R are
\(\left(\frac{3 k+2}{k+1}, \frac{4 k+1}{k+1}, \frac{3 k+5}{k+1}\right)\)
Clearly it is given that, line segment PQ is divided by the plane
2x + 2y – 2z = 1 …(1)
Thus the point R lies on eqn. (1); we have
\(2\left(\frac{3 k+2}{k+1}\right)+2\left(\frac{4 k+1}{k+1}\right)-2\left(\frac{3 k+5}{k+1}\right)\) = 1
⇒ 6k + 4 + 8k + 2 – 6k – 10 = k + 1
⇒ 7k = 5 ⇒ k = \(\frac{5}{7}\)
Thus the required ratio be k : 1
i.e. \(\frac{5}{7}\) : 1 i.e. 5 : 7
Thus, required point of division be
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 14

Question 11.
The mid-points of the sides of astriangle are (1, 5, -1),(0, 4, -2) and (2, 3, 4). Find its vertices.
Solution:
Let the vertices of △ABC are A (x1, y1, z1);
B (x2, y2, z2) and
C (x3, y3, z3).
It is given that D (1, 5, -1) ; E(0, 4, – 2) and F(2, 3, 4) are the mid-points of sides BC, CA and AB of △ABC.
Now D be the mid-point of BC.
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 15
On adding eqn. (1), (4) and (7); we have
x1 + x2 + x3 = 3 …(10)
From eqn. (1) and eqn. (10); x1 = 1
From (4) and (10); x2 = 3
and From eqn. (7) and (10); x3 = -1
On adding eqn. (2), (5) and (8); we have
y1 + y2 + y3 = 12 …(11)
From (2) and (11); y1 = 2
From (5) and (11); y2 = 4
From (8) and (11); y3 = 6
On adding eqn. (3), (6) and (9); we have
z1 + z2 + z3 = 1 …(12)
From (3) and (12); z1 = 3
From (6) and (12); z2 = 5
From (9) and (12); z3 = -7
Thus the required vertices of △ABC are (1, 2, 3) ;(3, 4, 5) and (-1, 6, -7).

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b)

Question 12.
Three vertices of a parallelogram ABCD are A(3, -1, 2), B(1, 2, -4) and C(-1, 1, 2). Find the coordinates of the fourth vertex D.
Solution:
Given vertices of parallelogram ABCD are A(3, -1, 2); B(1, 2, -4); C(-1, 1, 2) and let the coordinates of fourth vertex D are (α, β ,γ).
Mid-point of AC = \(\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)\)
and Mid-point of BD = \(\left(\frac{1+\alpha}{2}, \frac{2+\beta}{2}, \frac{-4+\gamma}{2}\right)\)
Since ABCD be a parallelogram.
∴ diagonals of || gm ABCD bisect each other.
Thus, mid-point of AC = mid-point of BD
OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(b) Img 16
Thus the coordinates of fourth vertex D are $(1,-2,8)$.

Question 13.
What is the locus of a point for which
(i) x = 0
(ii) y = 0
(iii) z = 0
(iv) x =a
(v) y = b
(vi) z = c?
Solution:
(i) The point for which x = 0 is of the form (0, y, z) and lies in yoz plane. Thus required locus of point be yz-plane.

(ii) The point for which y = 0 is of the form (x, 0, z) and lies in the xoz plane.
Thus, required locus of point be xz-plane.

(iii) The point for which z = 0 is of the form (x, y, 0) and lies in xoy plane. Thus required locus of a point be xy-plane.

(iv) Since x = a be the plane parallel to x = 0 i.e. yz plane. Thus locus of a point for which x = a be a plane parallel to yz plane at a distance of a units from it.

(v) Since y = b be the plane parallel to y = 0 i.e. xz-plane. Thus, locus of a point for which y = b be a plane parallel to xz plane at a distance b units from it.

(vi) Since z = c be a plane parallel to plane z = 0 i.e. xy plane. Thus locus of a point for which z = c be a plane || to xy plane at a distance c units from it.

Question 14.
What is the locus of a point for which
(i) x = 0, y = 0
(ii) y = 0, z = 0
(iii) z = 0, x = 0
(iv) x = a, y = b
(v) y = b, z = c
(vi) z = c, x = a?
Solution:
(i) We know that on z-axis, x = 0 = y Thus required locus be z-axis.
(ii) We know that on x-axis, we have y = 0 = z Thus required locus be x-axis.
(iii) We know that on y-axis, we have x = 0 = z Thus, required locus be y-axis.
(iv) x = a be the line || to y-axis and y = b be the line || to x-axis
Thus locus of a point for which x = a, y = b is the line of intersection of given planes x = a and y = b
(v) Clearly the locus of a point for which y = b, z = c is the line of intersection of given planes y = b and z = c
(vi) Given planes are z = c and x = a
Required locus is the line of intersection of planes z = c and x = a.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Continuous practice using Class 12 ISC Maths Solutions Chapter 8 Integrals Ex 8.19 can lead to a stronger grasp of mathematical concepts.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Evaluate the following (1 to 9) integrals :

Question 1.
(i) ∫ \(\frac{x^5}{\sqrt{1+x^3}}\) dx
(ii) ∫ \(\frac{d x}{\sqrt{2 e^x-1}}\)
Solution:
(i) Let I = ∫ \(\frac{x^5}{\sqrt{1+x^3}}\) dx
put \(\sqrt{1+x^3}\) = t
⇒ 1 + x3 = t2
⇒ x3 = t2 – 1
⇒ 3x2 dx = 2t dt
∴ I = ∫ \(\frac{\left(t^2-1\right) 2 t d t}{3 t}\)
= \(\frac{2}{3}\) ∫ (t2 – 1) dt
= \(\frac{2}{3}\left[\frac{t^3}{3}-t\right]\)
= \(\frac{2}{9}\) (1 + x3)3/2 – \(\frac{2}{3} \sqrt{1+x^3}\) + C

(ii) Let I = ∫ \(\frac{d x}{\sqrt{2 e^x-1}}\)
put \(\sqrt{2 e^x-1}\) = t
⇒ 2 ex – 1 = t2
⇒ 2 ex dx = 2t dt
∴ I = ∫ \(\frac{t d t}{e^x \cdot t}\)
= ∫ \(\frac{\frac{d t}{t^2+1}}{\frac{2}{2}}\)
= 2 ∫ \(\frac{d t}{t^2+1^2}\)
= 2 tan-1 t + C
= 2 tan-1 \(\left(\sqrt{2 e^x-1}\right)\) + C

Question 2.
(i) ∫ \(\frac{d x}{\tan x+\cot x+\sec x+\ {cosec} x}\)
(ii) ∫ \(\frac{d x}{\sec x+\ {cosec} x}\)
Solution:
(i) ∫ \(\frac{d x}{\tan x+\cot x+\sec x+\ {cosec} x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 1

(ii) ∫ \(\frac{d x}{\sec x+\ {cosec} x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 3.
(i) ∫ \(\frac{\cos 7 x-\cos 8 x}{1+2 \cos 5 x}\) dx
(ii) ∫ \(\frac{\cos 5 x+\cos 4 x}{1-2 \cos 3 x}\) dx (NCERT Exemplar)
Solution:
(i) Let I = ∫ \(\frac{\cos 7 x-\cos 8 x}{1+2 \cos 5 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 3

(ii) Let I = ∫ \(\frac{\cos 5 x+\cos 4 x}{1-2 \cos 3 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 4

Question 4.
(i) ∫ \(\frac{d x}{2 \sin x+3 \sec x}\)
(ii) ∫ \(\frac{d x}{\sin ^3 x+\cos ^3 x}\)
Solution:
(i) Let I = ∫ \(\frac{d x}{2 \sin x+3 \sec x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 5

(ii) Let I = ∫ \(\frac{d x}{\sin ^3 x+\cos ^3 x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 6

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 5.
(i) ∫ \(\frac{x^2-3}{x^3-2 x^2-x+2}\) dx
(ii) ∫ x tan-1 (2x + 3) dx
Solution:
(i) Let I = ∫ \(\frac{x^2-3}{x^3-2 x^2-x+2}\) dx
= ∫ \(\frac{\left(x^2-3\right) d x}{(x-1)\left(x^2-x-2\right)}\)
= ∫ \(\frac{\left(x^2-3\right) d x}{(x-1)(x+1)(x-2)}\)
Let \(\frac{x^2-3}{(x-1)(x+1)(x-2)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{x-2}\) …………..(1)
Multiply both sides ofeqn. (1) by (x- 1) (x + 1) (x – 2); we get
x2 – 3 = A (x + 1) (x – 2) + B (x – 1) (x – 2) + C (x – 1) (x + 1) …………..(2)
putting x = – 1, 1, 2 successively in eqn. (2) ; we have
– 2 = B (- 2) (- 3)
⇒ B = – \(\frac{1}{3}\)
– 2 = A (2) (- 1)
⇒ A = 1
and1 = 3C
⇒ C = \(\frac{1}{3}\)
∴ from (1) ; we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 7

(ii) Let I = ∫ x tan-1 (2x + 3) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 8

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 9

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 6.
(i) ∫ \(\frac{\tan ^{-1} x}{x^2}\) dx
(ii) ∫ \(\frac{\log |x|}{(x+1)^3}\) dx
Solution:
(i) Let I = ∫ tan-1 x . \(\frac{1}{x^2}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 10

(ii) Let I = ∫ \(\frac{\log |x|}{(x+1)^3}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 11

Multiplying eqn.(2) by x (x + 1)2;
we have 1 = A (x + 1)2 + B x (x + 1) + Cx ………….(3)
puuing x = 0, – 1 successively in eqn.(3);
we have 1 = A and 1 = – C
⇒ C = – 1
Coeff. of x2 ;
0 = A + B
⇒ B = – 1
∴ from eqn. (2); we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 12

Question 7.
(i) ∫ ex (log x + \(\frac{1}{x^2}\)) dx
(ii) ∫ cos 2x log \(\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)\) dx
Solution:
(i) Let I = ∫ ex (log x + \(\frac{1}{x^2}\)) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 13

(ii) Let I = ∫ cos 2x log \(\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)\) dx [by parts]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 14

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 8.
(i) ∫ \(\frac{x^2-x+1}{\left(x^2+1\right)^{3 / 2}}\) ex dx
(ii) ∫ \(\frac{x^2-1}{\left(x^4+3 x^2+1\right) \tan ^{-1}\left(x+\frac{1}{x}\right)}\) dx
Solution:
(i) Let I = ∫ \(\frac{x^2-x+1}{\left(x^2+1\right)^{3 / 2}}\) ex dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 15

(ii) Let I = ∫ \(\frac{x^2-1}{\left(x^4+3 x^2+1\right) \tan ^{-1}\left(x+\frac{1}{x}\right)}\) dx
Divide numerator and denominator by x2 ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 16

Question 9.
\(\int_0^\pi\) |cos x – sin x| dx
Solution:
Let I = \(\int_0^\pi\) |cos x – sin x| dx
When 0 ≤ x ≤ \(\frac{\pi}{4}\) ;
cos x ≥ sin x
⇒ cos x – sin x ≥ 0
∴ |cos x – sin x| = cos x – sin x
When \(\frac{\pi}{4}\) ≤ x ≤ 7 ;
sin x ≥ cos x
⇒ cos x – sin x ≤ 0
∴ |cos x – sin x| = – (cos x – sin x)
∴ I = \(\int_0^{\pi / 4}\) |cos x – sin x| dx + \(\int_{\pi / 4}^\pi\) |cos x – sin x| dx
= \(\int_0^{\pi / 4}\) (cos x – sin x) dx + \(\int_{\pi / 4}^\pi\) – (cos x – sin x) dx
= [sin x + cos x\(]_0^{\pi / 4}\) – [sin x + cos x\(]_{\pi / 4}^\pi\)
= \(\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right]-\left[0-1-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right]\)
= (√2 – 1) – (- 1 – √2)
= 2√2

Question 10.
Prove that \(\int_0^\pi \frac{x}{1-\cos \alpha \sin x} d x=\frac{\pi(\pi-\alpha)}{\sin \alpha}\).
Solution:
Let I = \(\int_0^\pi \frac{x}{1-\cos \alpha \sin x}\) dx ……………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 17

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 19

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 11.
Prove that \(\int_0^{\pi / 2} \frac{f(\sin x)}{f(\sin x)+f(\cos x)} d x=\frac{\pi}{4}\).
Solution:
Let I = \(\int_0^{\pi / 2} \frac{f(\sin x)}{f(\sin x)+f(\cos x)} d x=\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 19

Question 12.
Evaluate \(\int_0^2 \frac{d x}{\left(17+8 x-4 x^2\right)\left(e^{6(1-x)}+1\right)}\).
Solution:
Let I = \(\int_0^2 \frac{d x}{\left(17+8 x-4 x^2\right)\left(e^{6(1-x)}+1\right)}\) ……………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 20

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19 21

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.19

Question 13.
If p (x) is a polynomial of least degree that has maximum value equal to 6 at x = 1, and a minimum value equal to 2 at x = 3, then show that \(\int_0^1\) p(x) dx = \(\frac{19}{4}\).
Solution:
Since p (x) be a polynomial of least degree
and it has maximum and minimum values.
∴ p’ (x) must be atleast polynomial of degree 2.
Thus p (x) must be a polynomial of degree 3.
Let p(x) = ax3 + bx2 + cx + d ……………….(1)
∴ p’(x) = 3ax2 + 2bx + c
Since p (x) has maximum values equal to 6 at x = 1
and a minimum value equal to 2 at x = 3.
∴ p'(1) = 0 – p'(3)
⇒ 3a + 2b + c = 0 …………..(2)
and 27a + 6b + c = 0 ……………(3)
also p(1) 6
⇒ a + b + c + d= 6 …………(4)
and p (3) = 2
⇒ 27a + 9b + 3c + d = 2 …………….(5)
eqn. (5) – eqn. (4) gives:
26a + 8b + 2c = – 4
⇒ 13a + 4b + c = – 2 ……………..(6)
eqn. (3) – eqn. (2) gives;
24a + 4b = 0
⇒ 6a + b = 0 …………….(7)
eqn. (3) – eqn. (6) gives
14a + 2b = 2
⇒ 7a + b = 1 ……………(8)
eqn. (8) – eqn. (7) gives;
a = 1
∴ from (7);
b = – 6
∴ from eqn.(6);
13 – 24 + c = – 2
⇒ c = 9
from eqn (4) ;
1 – 6 + 9 + d = 6
⇒ d = 2
∴ from (1) ;
p(x) = x3 – 6x2 + 9x + 2
∴ \(\int_0^1\) p(x) dx = \(\int_0^1\) (x3 – 6x2 + 9x + 2) dx
= \(\left[\frac{x^4}{4}-2 x^3+\frac{9 x^2}{2}+2 x\right]_0^1\)
= \(\left[\frac{1}{4}-2+\frac{9}{2}+2\right]=\frac{19}{4}\)

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(a)

The availability of step-by-step ISC Mathematics Class 11 OP Malhotra Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(a) can make challenging problems more manageable.

S Chand Class 11 ICSE Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(a)

Question 1.
Find the distance from the origin to each of the points :
(i) (2, 2, 3)
(ii) (4, -1, 2)
(iii) (0, 4, -4)
(iv) (-4, -3, -2)
Solution:
(i) Required distance of origin O(0, 0, 0) from P(2, 2, 3) = \(\sqrt{(2-0)^2+(2-0)^2+(3-0)^2}\) = \(\sqrt{4+4+9}\) = \(\sqrt{17}\)
(ii) Required distance =\(\sqrt{(4-0)^2+(-1-0)^2+(2-0)^2}\) = \(\sqrt{16+1+4}\) = \(\sqrt{21}\)
(iii) Required distance = \(\sqrt{(0-0)^2+(4-0)^2+(-4-0)^2}\) = \(\sqrt{16+16}\) = \(4 \sqrt{2}\)
(iv) Required distance = \(\sqrt{(-4-0)^2+(-3-0)^2+(-2-0)^2}\) = \(\sqrt{16+9+4}\) = \(\sqrt{29}\)

Question 2.
Find the distance between each of the following pairs of points :
(i) (2, 5, 3) and (-3, 2, 1);
(ii)(0, 3, 0) and (6, 0, 2);
(iii) (-4, -2, 0) and (3, 3, 5).
Solution:
(i) Required distance = \(\sqrt{(-3-2)^2+(2-5)^2+(1-3)^2}\) = \(\sqrt{25+9+4}\) = \(\sqrt{38}\)
(ii) Required distance = \(\sqrt{(6-0)^2+(0-3)^2+(2-0)^2}\) = \(\sqrt{36+9+4}\) = \(\sqrt{49}\) = 7
(iii) Required distance = \(\sqrt{(3+4)^2+(3+2)^2+(5-0)^2}\) = \(\sqrt{49+25+25}\) = \(\sqrt{99}\) = \(3 \sqrt{11}\)

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(a)

Question 3.
Show that the triangle with vertices (6, 10, 10),(1, 0, -5),(6, -10, 0) is a right-angled triangle, and find its axes.
Solution:
Let the given vertices of triangle are A(6, 10, 10); B(1, 0, -5) and C (6, -10, 0)
∴ AB = \(\sqrt{(1-6)^2+(0-10)^2+(-5-10)^2}\) = \(\sqrt{25+100+225}\) = \(\sqrt{350}\)
BC = \(\sqrt{(6-1)^2+(-10-0)^2+(0+5)^2}\) = \(\sqrt{25+100+25}\) = \(\sqrt{150}\)
CA = \(\sqrt{(6-6)^2+(-10-10)^2+(0-10)^2}\) = \(\sqrt{400+100}\) = \(\sqrt{500}\)
∴ AB2 + BC2 =350 + 150 = 500 = CA2
Thus △ABC be right angled △ at B.
Therefore A, B and C are the vertices of right angled triangle.
∴ area of △ABC = \(\frac { 1 }{ 2 }\) (AB) × (BC) = \(\frac { 1 }{ 2 }\) × \(\sqrt{350} \sqrt{150}\) = \(\frac { 1 }{ 2 }\) \(\sqrt{35 \times 15 \times 100}\)
= \(\frac { 1 }{ 2 }\) × 50√21 = 25√21 sq. units

Question 4.
Show that the triangle with vertices A(3, 5, -4), B(-1, 1, 2), C(-5, -5, -2) is isosceles.
Solution:
Given vertices of triangle are A (3, 5, -4), B(-1, 1, 2) and C(-5, -5, -2).
AB = \(\sqrt{(-1-3)^2+(1-3)^2+(2+4)^2}\) = \(\sqrt{16+16+36}\) = \(\sqrt{68}\) = \(2 \sqrt{17}\)
BC = \(\sqrt{(-5+1)^2+(-5-1)^2+(-2-2)^2}\) = \(\sqrt{16+36+16}\) = \(\sqrt{68}\)
CA = \(\sqrt{(3+5)^2+(5+5)^2+(-4+2)^2}\) = \(\sqrt{64+100+4}\) = \(\sqrt{168}\)
Thus AB = BC
∴ △ ABC be an isosceles triangle.

Question 5.
Show that (4, 2, 4),(10, 2, -2) and (2, 0, -4) are the vertices of an equilateral triangle.
Solution:
Let the vertices of triangle are A(4, 2, 4), B(10, 2, -2) and C(2, 0, -4).
AB = \(\sqrt{(10-4)^2+(2-2)^2+(-2-4)^2}\) = \(\sqrt{36+36}\) = \(6 \sqrt{2}\) = \(\sqrt{72}\)
BC = \(\sqrt{(2-10)^2+(0-2)^2+(-4+2)^2}\) = \(\sqrt{64+4+4}\) = \(\sqrt{72}\)
and CA = \(\sqrt{(4-2)^2+(2-0)^2+(4+4)^2}\) = \(\sqrt{4+4+64}\) = \(\sqrt{72}\)
Thus AB = BC = CA
∴ △ ABC is an equilateral triangle.

Question 6.
Show that the points (1, -1, 3),(2, -4, 5) and (5, -13, 11) are collinear.
Solution:
Given points are A(1, -1, 3); B(2, -4, 5) and C(5, -13, 11)
Here AB = \(\sqrt{(2-1)^2+(-4+1)^2+(5-3)^2}\) = \(\sqrt{1+9+4}\) = \(\sqrt{14}\)
BC = \(\sqrt{(5-2)^2+(-13+4)^2+(11-5)^2}\) = \(\sqrt{9+81+36}\) = \(\sqrt{126}\) = \(3 \sqrt{14}\)
CA = \(\sqrt{(1-5)^2+(-1+13)^2+(3-11)^2}\) = \(\sqrt{16+144+64}\) = \(\sqrt{224}\) = \(4 \sqrt{14}\)
Clearly AB + BC = CA
Thus the points A, B and C are collinear.

Question 7.
Derive the equation of the locus of a point equidistant from the points (1, -2, 3) and (-3, 4, 2).
Solution:
Let P(x, y, z) be any point on locus and A(1, -2, 3), B(-3, 4, 2) are given points.
According to given condition, we have |PA| = | PB |
\(\sqrt{(x-1)^2+(y+2)^2+(z-3)^2}\) = \(\sqrt{(x+3)^2+(y-4)^2+(z-2)^2}\)
On squaring both sides; we have
(x – 1)2 + (y + 2)2 + (z – 3)2 =(x + 3)2 + (y – 4)2 + (z – 2)2
⇒ -2x +4y – 6z + 14 = 6x – 8y – 4z + 29
⇒ 8x – 12y + 2z + 15 = 0
which is the required locus of a point.

Question 8.
Derive the equation of the locus of a point twice as far from (-2, 3, 4) as from (3, -1, -2).
Solution:
Let P(x, y, z) be any point on the locus
such that PA = 2 PB
where A be the point (-2, 3, 4) and B be the point (+3, -1, -2).
\(\sqrt{(x+2)^2+(y-3)^2+(z-4)^2}\) = \(2 \sqrt{(x-3)^2+(y+1)^2+(z+2)^2}\)
On squaring both sides; we have
(x + 2)2 + (y – 3)2 + (z – 4)2 =4[(x – 3)2 + (y + 1)2 + (z + 2)2]
⇒ 3x2 + 3y2 + 3z2 – 28x + 14y + 24z + 27 = 0
which is the required locus.

Question 9.
Find the equation of the locus of a point whose distance from the y-axis is equal to its distance from (2, 1, -1).
Solution:
Let P(x, y, z) be any point on locus and A(0, y, 0) be any point on y-axis and B(2, 1, -1) be the given point.
According to given condition, PA = PB
\(\sqrt{(x-0)^2+(y-y)^2+(z-0)^2}\) = \(\sqrt{(x-2)^2+(y-1)^2+(z+1)^2}\)
On squaring both sides; we have
x2 + z2 = x2 + y2 + z2 – 4x – 2y + 2z + 6
⇒ y2 – 4x – 2y + 2z + 6 = 0 be the required eqn. of locus.

OP Malhotra Class 11 Maths Solutions Chapter 26 Points and their Coordinates in 3-Dimensions Ex 26(a)

Question 10.
Find the equation of the locus of a point whose distance from the xy-plane is equal to distance from the point (-1, 2, -3).
Solution:
Let P(x, y, z) be any point on locus and A(x, y, 0) be any point in xy plane and B(-1, 2, -3) b the given point.
Then according to given condition; we have PA = PB
\(\sqrt{(x-x)^2+(y-y)^2+(z-0)^2}\) = \(\sqrt{(x+1)^2+(y-2)^2+(z+3)^2}\)
On squaring both sides; we have
0 + 0 + z2 = x2 + y2 + z2 + 2x – 4y + 6z + 14
⇒ x2 + y2 + 2x – 4y + 6z + 14 = 0
which is the required locus.

Question 11.
A point moves so that the difference of the squares of its distances from the x-axis and the y-axis is constant. Find the equatiol of its locus.
Solution:
Let P(x, y, z) be any point on locus and let Q(x, 0, 0) and R(0, y, 0) be any two points on x-axis and y-axis.
Then according to given condition; we have
PQ2 – PR2 = constant = k
⇒ \(\left[\sqrt{(x-x)^2+(y-0)^2+(z-0)^2}\right]^2\) – \(\left[\sqrt{(x-0)^2+(y-y)^2+(z-0)^2}\right]^2\) = k
⇒ y2 + z2 – x2 – z2 = k
⇒ y2 – x2 = k
which is the required locus.

Question 12.
Find the equation of the locus of a point whose distance from the z-axis is equal to its distance from the xy-plane.
Solution:
Let P(x, y, z) be any point on locus and let Q(0, 0, z) be any point on z-axis and R(x, y, 0) be any point in xy-plane.
Then PQ = PR
⇒ \(\sqrt{(x-0)^2+(y-0)^2+(z-z)^2}\) = \(\sqrt{(x-x)^2+(y-y)^2+(z-0)^2}\)
On squaring both sides; we have
x2 + y2 = z2
⇒ x2 + y2 – z2 = 0
which is the required locus.

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Chapter Test

The availability of step-by-step ISC Mathematics Class 11 OP Malhotra Solutions Chapter 25 Hyperbola Chapter Test can make challenging problems more manageable.

S Chand Class 11 ICSE Maths Solutions Chapter 25 Hyperbola Chapter Test

Question 1.
Find the eccentricity and the coordinate of foci of the hyperbola 25x2 – 9y2 = 225.
Solution:
Given eqn. of hyperbola can be written as ;
\(\frac{x^2}{9}\) – \(\frac{y^2}{25}\) = 1 …(1)
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
we have a2 = 9 and b2 = 25
We know that b2 = a2 (e2 – 1)
⇒ 25 = 9(e2 – 1)
⇒ \(\frac{25}{9}\) + 1 = e2
⇒ e = \(\frac{\sqrt{34}}{3}\) (∵ e > 0)
Thus the required eccentricity of given eqn. (1) be \(\frac{\sqrt{34}}{3}\)
The coordinates of foci are ( ± ae, 0) i.e. \(\left( \pm 3 \times \frac{\sqrt{34}}{3}, 0\right)\) i.e. \(( \pm \sqrt{34}, 0)\).

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Chapter Test

Question 2.
Find the value (s) of k so that the line 2x + y + k = 0 may touch the hyperbola 3x2 – y2 = 3.
Solution:
eqn. of given hyperbola be 3x2 – y2 = 3 ⇒ \(\frac{x^2}{1}\) – \(\frac{y^2}{3}\) = 1
On comparing eqn. (1) with\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
we have a2 = 1; b2 = 3
eqn. of given line be
2x + y + k = 0 ⇒ y = – 2x – k
We know that the line y = mx + c touches hyperbola (1) if c = ±\(\sqrt{a^2 m^2-b^2}\)
Here m = – 2 and c = – k
Thus, eqn. (2) touches hyperbola (1)
if – k = ± \(\sqrt{1 \times(-2)^2-3}\)
⇒ – k = ± 1
⇒ k = ± 1

Question 3.
From the following information, find the equation of the hyperbola and the equation of the transverse axis.
Focus (-2, 1), Directrix : 2x – 3y + 1 = 0, e = \(\frac{2}{\sqrt{3}}\)
Solution:
Let P (x, y) be any point on the hyperbola.
Then by definition, we have | PF | = | PM |
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Chapter Test Img 1
On squaring both sides ; we have
(x + 2)2 + (y – 1)2 =\frac{4}{39}(2x – 3y + 1)2
⇒ 39 [x2 + 4x + 4 + y2 – 2y + 1]
= 4 [4x2 + 9y2 – 12xy – 6y + 1+ 4x]
which is the required eqn. of hyperbola.
Axis of hyperbola is a line ⊥ to the directrix and pass through the focus (- 2, 1).
Thus eqn. of line ⊥ to 2x – 3y + 1 = 0 be given by
3x + 2y + k = 0 …(1)
eqn. (1) pass through the point (- 2, 1).
-6 + 2 + k = 0
⇒ k = 4
Thus eqn. (1) reduces to ; 3x + 2y + 4 = 0 be the required eqn. of axis of hyperbola.

Question 4.
Find the equation of the hyperbola whose eccentricity is √5 and the sum of whose semi-axes is 9.
Solution:
Let the required eqn. of hyperbola be
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
given eccentricity of hyperbola be √5
∴ e = √5
Let a be length of semi-major and b be the length of semi-minor axes of hyperbola.
According to given condition, we have
a + b = 9 …(2)
We know that b2 = a2 (e2 – 1)
⇒ b2 = a2(5 – 1) = 4a2
⇒ (9 – a)2 = 4a2 [using eqn. (2)]
⇒ 3a2 + 18a – 81 = 0
⇒ (a – 3)(3a + 27) = 0
⇒ a = 3 (∵ a > 0)
∴ from (2); b = 9 – 3 = 6
Thus eqn. (1) reduces to ;
\(\frac{x^2}{9}\) – \(\frac{y^2}{36}\) = 1
which is the required eqn. of hyperbola.

Question 5.
Find the equation of the hyperbola whose foci are (4, 1),(8, 1) and whose eccentricity is 2.
Solution:
We know that centre is the mid-point of line joining the two foci (4, 1) and (8, 1).
∴ Coordinates of centre of hyperbola are \(\left(\frac{4+8}{2}, \frac{1+1}{2}\right)\) i.e. (6, 1).
Since ordinate of both foci are identical
∴ Transverse axis of the hyperbola is parallel to x-axis.
Thus eqn. of hyperbola can be taken as
\(\frac{(x-6)^2}{a^2}\) – \(\frac{(y-1)^2}{b^2}\) = 1
Given eccentricity of eqn. (1) be 2 i.e. e = 2
∴ distance between foci
= \(\sqrt{(8-4)^2+(1-1)^2}\) = 4
⇒ 2ae = 4 ⇒ ae = 2 ⇒ a = 1
∴ b2 = a2 (e2 – 1) = 12(4 – 1) = 3
Thus, eqn. (1) reduces to ;
\(\frac{(x-6)^2}{1}\) – \(\frac{(y-1)^2}{3}\) = 1
⇒ 3 (x – 6)2 – (y – 1)2 = 3
which is the required eqn. of hyperbola.

Question 6.
Show that the line y = x + √7 touches the hyperbola 9x2 – 16y2 = 144.
Solution:
Given eqn. of hyperbola be
9x2 – 16y2 = 144
and eqn. of given line be
y = x + √7 …(2)
From (2); y = x + √7, putting in eqn. (1); we get
9x2 – 16 (x + √7)2 = 144
⇒ 9x2 – 16 (x2 + 7 + 2√7 x) – 144 = 0
⇒ -7x2 – 32√7x – 256 = 0
⇒ 7x2 + 32√7x + 256 = 0
⇒ (√7x +1 6)2 = 0
eqn. (3) is quadratic in x and have equal roots
∴ from (3) ; x = \(\frac{-16}{\sqrt{7}}\)
Thus line (2) touches hyperbola eqn. (1).

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Chapter Test

Question 7.
Find the equation of the hyperbola whose foci are (0, ± 13) and the length of the conjugate axis is 20.
Solution:
Coordinates of foci are (0, ± 13) which are lies on y-axis and y-axis be the transverse axis of hyperbola.
Let the eqn. of hyperbola be,
\(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1
Here ae = 13
and 2b = 20 and b = 10
We know that, b2 = a2 (e2 – 1)
⇒ 100 = 132 – a2
⇒ a2 = 69
Thus eqn. (1) reduces to ; \(\frac{y^2}{69}\) – \(\frac{x^2}{100}\) = 1,
which is the required eqn. of hyperbola.

Question 8.
Find the equation of the hyperbola whose transverse and conjugate axes are the x and y axes respectively, given that the length of conjugate axis is 5 and distance between the foci is 13 .
Solution:
Let the eqn. of hyperbola be
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
Given length of conjugate axis be 5
∴ 2b = 5 ⇒ b = \(\frac{5}{2}\)
and distance between foci = 13
⇒ 2 ae = 13 …(2)
We know that b2 = a2 (e2 – 1)
⇒ \(\left(\frac{5}{2}\right)^2\) = \(\left(\frac{13}{2}\right)^2\) – a2
⇒ a2 = \(\frac{169}{4}\) – \(\frac{25}{4}\) = \(\frac{144}{4}\) = 36
Thus, eqn. (1) reduces to;
\(\frac{x^2}{36}\) – \(\frac{y^2}{25 / 4}\) = 1
⇒ \(\frac{x^2}{36}\) – \(\frac{4 y^2}{25}\) = 1
⇒ 25x2 – 144y2 = 900
which is the required eqn. of hyperbola.

Question 9.
Find the equation to the conic whose focus is (1, -1), eccentricity is \(\frac{1}{2}\) and the directrix is the line x – y = 3. Is the conic section an ellipse?
Solution:
Given focus of ellipse be F (1, -1) and eqn. of directrix be x – y -3 = 0 and e = \(\frac{1}{2}\)
Let P (x, y) be any point on ellipse. Then by def. of ellipse, we have | PF | = e | PM |
where PM be the ⊥ drawn from P on given directrix.
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Chapter Test Img 2
On squaring both sides, we have
8[(x – 1)2 + (y + 1)2] = (x – y – 3)2
⇒ 8 (x2 – 2x + y2 + 2y + 2) = x2 + y2 + 9 – 2xy + 6y – 6x
⇒ 7x2 + 7y2 + 2xy – 10x + 10y + 7 = 0
which is the required eqn. of ellipse.

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b)

Utilizing ISC Mathematics Class 11 OP Malhotra Solutions Chapter 25 Hyperbola Ex 25(b) as a study aid can enhance exam preparation.

S Chand Class 11 ICSE Maths Solutions Chapter 25 Hyperbola Ex 25(b)

Question 1.
Find the tangent to the parabola y2 = 16x, making an angle of 45° with the x-axis.
Solution:
The eqn. of tangent to parabola be
y = mx + \(\frac{a}{m}\) …(1)
Here m = tan 45° = 1
On comparing y2 = 16x with y2 = 4ax ;
we have, 16 = 4a
⇒ a = 4
Thus eqn. (1) reduces to ; y = x + 4
which is the required eqn. of tangent to given parabola.

Question 2.
A tangent to the parabola y2 = 16x makes an angle of 60° with the x-axis. Find its point of contact.
Solution:
We know that, the line y = mx + c may touch the parabola y2 =4ax then the point of contact be given by \(\left(\frac{a}{m^2}, \frac{2 a}{m}\right)\),
On comparing y2 = 16x with y2 = 4ax
we have, 16 = 4a ⇒ a = 4
and m = tan 60° = √3
∴ required point of contact be \(\left(\frac{4}{3}, \frac{2 \times 4}{\sqrt{3}}\right)\) i.e. \(\left(\frac{4}{\sqrt{3}}, \frac{8}{\sqrt{3}}\right)\)

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b)

Question 3.
(i) Find the equations of the tangents to the parabola y2 = 6x which pass through the point \(\left(\frac{3}{2}, 5\right)\).
(ii) Find the equations of the tangents to the parabola y2 + 12x = 0 from the point (3, 8).
Solution:
(i) On comparing y2 = 6x with y2 = 4ax; we have
4a = 6 ⇒ a = \(\frac{3}{2}\)
We know that, eqn. of any tangent to parabola y2 = 4ax be given by
y = mx + \(\frac{a}{m}\) …(1)
Thus required eqn. of tangent to parabola y2 = 6x be given by
y = mx + \(\frac{3}{2 m}\) …(2)
Now eqn. (2) passes through the point \(\left(\frac{3}{2}, 5\right)\).
5 = \(\frac{3}{2}\) m + \(\frac{3}{2 m}\)
⇒ 10m = 3m2 + 3
⇒ 3m2 – 10m + 3 = 0
⇒ (m – 3) (3m – 1) = 0
⇒ m = 3, \(\frac{1}{3}\)
putting the values of m in eqn. (2); we have
y = 3x + \(\frac{3}{2 \times 3}\)
⇒ y = 3x + \(\frac{1}{2}\)
⇒ 2y = 6x + 1 …(3)
and y = \(\frac{1}{3}\)x + \(\frac{3 \times 3}{2 \times 1}\)
⇒ y = \(\frac{x}{3}\) + \(\frac{9}{2}\)
⇒ 6y = 2x + 27 …(4)
Thus eqn. (3) and eqn. (4) are the required eqns. of tangents to given parabola.

(ii) Given eqn. of parabola be
y2 = -12x …(1)
On comparing eqn. (1) with y2 = 4ax
we have, 4a = – 12 ⇒ a = – 3
We know that, eqn. of any tangent to parabola y2 = 4ax be given by
y = mx + \(\frac{a}{m}\)
Thus eqn. of any tangent to given parabola (1) be given by
y = mx – \(\frac{3}{m}\)
Now eqn. (2) passes through the point (3, 8).
8 = 3m – \(\frac{3}{m}\) ⇒ 3m2 – 8m – 3 = 0
⇒ m = \(\frac{8 \pm \sqrt{64+36}}{6}\) = \(\frac{8 \pm 10}{6}\) = 3, \(\frac{1}{3}\)
putting m = 3 in eqn. (2) ; we have
y = 3x – 1 …(3)
putting m = –\(\frac{1}{3}\) in eqn. (2) ; we have
y = –\(\frac{1}{3}\) + 9 ⇒ 3y = -x + 27 …(4)
Thus, eqn. (3) and eqn. (4) gives the required tangents to given parabola.

Question 4.
Show that the line 12y – 20x – 9 = 0 touches the parabola y2 = 5x.
Solution:
Given eqn. of parabola be
y2 = 5x …(1)
On comparing eqn. (1) with y2 = 4ax ; we have
4a = 5
⇒ a = \(\frac{5}{4}\)
Given eqn. of line can be written as ;
y = \(\frac{20 x}{12}\) + \(\frac{9}{12}\)
⇒ y = \(\frac{5 x}{3}\) + \(\frac{3}{4}\) …(2)
Comparing eqn. (2) with y = mx + c
we have, m = \(\frac{5}{3}\) and c = \(\frac{3}{4}\)
Here, \(\frac{a}{m}\) = \(\frac{\frac{5}{4}}{\frac{5}{3}}\) = \(\frac{3}{4}\) = c
Thus line (2) touches the parabola (1).

Question 5.
Show that the line x + y = 1 touches the parabola y = x – x2.
Solution:
Given eqn. of line be
x + y = 1 …(1)
and eqn. of parabola be y = x – x2 …(2)
From (1); y = 1 – x, putting in eqn. (2); we have
1 – x = x – x2
⇒ x2 – 2x + 1 = 0
⇒ (x – 1)2 = 0 …(3)
i.e. eqn. (3) have equal roots.
Thus eqn. (1) touches eqn. (2).

Question 6.
Show that the line x + ny + an2 = 0 touches the parabola y2 = 4ax and find the point of contact.
Solution:
Given eqn. of line be
x + ny + an2 = 0 …(1)
y2 = 4ax …(2)
From (1); y = \(\frac{-x-a n^2}{n}\)
putting the value of y in eqn. (2) ; we have
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b) Img 1
which is quadratic in x and have equal roots. Thus line (1) touches parabola (2).
∴ from (3); x = an2
from (1); ny + 2an2 = 0 ⇒ y = – 2an
Hence the required point of contact be (an2, – 2an).

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b)

Question 7.
Find the tangents to the ellipse x2 + 9y2 = 3, which are (i) parallel (ii) perpendicular to the line 3x + 4y = 9.
Solution:
Given eqn. of ellipse be
x2 + 9y2 = 3 ⇒ \(\frac{x^2}{3}\) + \(\frac{y^2}{\frac{1}{3}}\) = 1 …(1)
which is a horizontal ellipse.
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
we have a2 = 3 and b2 = \(\frac{1}{3}\)
eqn. of given line be
3x + 4y – 9 = 0 …(2)
∴ slope of line (2) = –\(\frac{3}{4}\)
∴ slope of line || to line (2) = –\(\frac{3}{4}\) = m
The eqns. of tangents to ellipse (1) be
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b) Img 2

(ii) slope of line ⊥ to line (2)
= \(-\frac{1}{-\frac{3}{4}}\) = \(\frac{4}{3}\) = m
∴ required eqns. of tangents to ellipse (1) be given by
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b) Img 3

Question 8.
Find the equations of the tangents to the ellipse \(\frac{x^2}{2}\) + \(\frac{y^2}{7}\) = 1 that make an angle of 45° with the x-axis.
Solution:
Given eqn. of ellipse be
\(\frac{x^2}{2}\) + \(\frac{y^2}{7}\) = 1 …(1)
which is a vertical ellipse.
On comparing eqn. (1) with
\(\frac{x^2}{b^2}\) + \(\frac{y^2}{a^2}\) = 1, a > b > o
We have a2 = 7 ; b2 = 2
Here m = tan 45° = 1
The eqns. of tangents to given ellipse (1) be given by
y = mx ± \(\sqrt{b^2 m^2+a^2}\)
⇒ y = x ± \(\sqrt{2+7}\)
⇒ y = x ± 3

Question 9.
Find the equation of the tangents to the ellipse \(\frac{x^2}{16}\) + \(\frac{y^2}{9}\) = 1, which make equal intercepts on the axes.
Solution:
Given eqn. of ellipse be,
\(\frac{x^2}{16}\) + \(\frac{y^2}{9}\) = 1 …(1)
which is a horizontal ellipse.
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
where a > b > 0
we have a2 = 16 and b2 = 9
Since tangents makes equal intercepts on axes
∴ slope of tangents = m = ± 1
Thus required eqns. of tangents to eqn. (1) be given by
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b) Img 4

Question 10.
Find the value of ‘c’ so that 2x -y + c = 0 may touch the ellipse x2 + 2y2 = 2.
Solution:
Given eqn. of line be 2x -y + c = 0
⇒ y = 2x + c …(1)
and eqn. of given ellipse be x2 + 2y2 = 2
⇒ \(\frac{x^2}{2}\) + \(\frac{y^2}{1}\) = 1 …(2)
We know that the line y = mx + c touches the ellipse \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
if c = ± \(\sqrt{a^2 m^2+b^2}\)
if c = ± \(\sqrt{2 \times 2^2+1}\)
⇒ c = ± 3
[Here m = 2 ; a2 = 2 ; b2 = 1]

Question 11.
Show that the line lx + my = 1 will touch the ellipse \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 if a2l2 + b2m2 = 1.
Solution:
eqn. of given line be
lx + my = 1 …(1)
and eqn. of ellipse be \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 … (2)
From (1) ; y = \(\frac{1-l x}{m}\)
putting the value of y in eqn. (2); we have
\(\frac{x^2}{a^2}\) + \(\frac{1}{b^2}\) \(\left(\frac{1-l x}{m}\right)^2\) = 1
⇒ m2b2x2 + a2 (1 – lx)2 = a2b2m2
⇒ x2 [m2b2 + a2l2] – 2a2lx + a2 – a2b2m2 = 0 …(3)
Now eqn. (1) touches eqn. (2)
if roots of quadratic eqn. (3) are equal
if Discriminant = 0
if (- 2a2l)2 – 4 (b2m2 + a2l2) (a2 – a2b2m2) = 0
if 4a4l2 – 4a2b2m2 + 4a2b4m4 – 4a4l2 + 4a4b2l2m2 = 0
if 4a2b2m2 (b2m2 + a2l2 – 1) = 0
if b2m2 + a2l2 = 1 which is the required condition.

Question 12.
Show that the following lines are tangents to the given hyperbola and determine the points of contact.
(i) x + 1 = 0, 4x2 – 3y2 = 4
(ii) x – 2y + 1 = 0, x2 – 6y2 = 3
Solution:
Given eqn. of line be x + 1 = 0 ⇒ x = – 1 …(1)
and eqn. of given hyperbola be 4x2 – 3y2 = 4 i.e. \(\frac{x^2}{1}\) – \(\frac{y^2}{\frac{4}{3}}\) = 1
putting eqn. (1) in eqn. (2) ; we have
4 – 3x2 = 4 ⇒ y2 = 0 which is quadratic in y and gives equal roots and each root be 0.
Thus line (1) touches hyperbola (2).
Putting y = 0 in eqn. (1); x = – 1
Hence the required point of contact be (- 1, 0)

(ii) Given eqn. of line be x- 2y + 1 = 0 …(1)
and eqn. of hyperbola be x2 – 6y2 = 3 …(2)
From (1); y = \(\frac{x+1}{2}\), putting the value of y in eqn. (2); we have
x2 – 6\(\left(\frac{x+1}{2}\right)^2\) = 3
⇒ x2 – \(\frac{3}{2}\) (x + 1)2 = 3
⇒ 2x2 – 3 (x2 + 2x + 1) = 6
⇒ -x2 – 6x – 9 = 0
⇒ (x – 3)2 = 0
Clearly eqn. (3) have equal roots.
Thus line (1) touches given hyperbola (2).
∴ from (3); x + 3 = 0 ⇒ x = – 3
∴ from (1); y = – 1
Thus, the required point of contact be (- 3, – 1).

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(b)

Question 13.
Find the equations of the tangents to the hyperbola 2x2 – 3y2 = 6, which re parallel to the Iine x + y – 2 = 0.
Solution:
eqn. of given hyperbola be, 2x2 – 3y2 = 6 ⇒ \(\frac{x^2}{3}\) – \(\frac{y^2}{2}\) = 1
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
we have a2 = 3 and b2 = 2
and eqn. of given line be x + y – 2 = 0
i.e. y = – x + 2 …(2)
On comparing eqn. (2) with y = mx + c
we have m = – 1 and c = 2
Thus the required eqns. of tangents to eqn. (1) be given by
y = mx ± \(\sqrt{a^2 m^2-b^2}\)
⇒ y =- x ± \(\sqrt{3(-1)^2-2}\)
⇒ y = – x ± 1
⇒ x + y ± 1 = 0

Question 14.
The tangents from P to the hyperbola \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 are mutually perpendicular, show that the locus of P is the circle x2 + y2 = a2 – b2.
Solution:
Given eqn. of hyperbola be
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
Thus, eqn. of tangents to hyperbola (1) at P (x, y) be given by
y = mx ± \(\sqrt{a^2 m^2-b^2}\)
⇒ y – mx = ± \(\sqrt{a^2 m^2-b^2}\)
On squaring both sides ; we have
(y – mx)2 = a2m2 – b2
⇒ m2x2 +y2 – 2myx + b2 – a2m2 = 0
⇒ m2x2 – 2myx + (b2 – a2m2 + y2) = 0
⇒ m2(x2 – a2) – 2xym + b2 + y2 = 0 …(2)
eqn. (2) is a quadratic in m and hence two roots say m1 and m2
∴ product of roots = m1 m2 = – 1
⇒ \(\frac{y^2+b^2}{x^2-a^2}\) = -1
y2 + b2 = -x2 + a2
⇒ x2 +y2 = a2 – b2 which is the required locus of point P.

Question 15.
Show that the straight line x + y = 1 touches the hyperbola 2x2 – 3y2 = 6. Also find the coordinates of the point of contact.
SoLUTION:
Given eqn. of line be
x + y =1 …(1)
and eqn. of given hyperbola be
2x2 – 3y2 = 6 …(2)
∴ from (1); y = 1 – x, putting in eqn. (3); we get
2x2 – 3 (1 – x)2 = 6
⇒ 2x2 – 3 (x2 + 1 – 2x) = 6
⇒ -x2 + 6x – 9 = 0
⇒ x2 – 6x + 9 = 0
⇒ (x – 3)2 = 0 …(3)
Thus eqn. (3) is a quadratic in x and have two equal roots i.e. x = + 3, + 3.
∴ eqn. (1) touches hyperbola (2).
putting x = + 3 in eqn. (1); we have y = -2.
∴ required point of contact be (+ 3, – 2).

Question 16.
Find the equations of the tangents to the hyperbola 4x2 – 9y2 = 144, which are perpendicular to the line 6x + 5y = 21. Solution:
Given eqn. of hyperbola be
4x2 – 9y2 = 144 ⇒ \(\frac{x^2}{36}\) – \(\frac{y^2}{16}\) = 1 …(1)
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
we have, a2 = 36 and b2 = 16
slope of given line 6x + 5y – 21 = 0 be \(\frac{-6}{5}\)
∴ slope of line ⊥ to given line = \(\frac{-1}{-6/5}\) = \(\frac{5}{6}\) = m
Thus, eqns. of tangents to hyperbola (1) be given by
y = mx ± \(\sqrt{a^2 m^2-b^2}\)
⇒ y = \(\frac{5}{6}\) x ± \(\sqrt{36 \times \frac{25}{36}-16}\)
⇒ y = \(\frac{5}{6}\) x ± 3
⇒ 6y = 5x ± 18
⇒ 5x – 6y ± 18 = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Effective ISC Maths Class 12 Solutions Chapter 8 Integrals Ex 8.18 can help bridge the gap between theory and application.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Very Short answer type questions:

Evaluate the following (1 to 5) definite integrals :

Question 1.
(i) \(\int_{-1}^1\) |x| dx
(ii) \(\int_0^3\) |x – 2| dx
(iii) \(\int_0^2\) dx
(iv) \(\int_{-1}^1 \frac{|x+2|}{x+2}\) dx
(v) \(\int_{-3}^6 \frac{x+3}{|x+3|}\) dx
(vi) \(\int_0^3\) [x] dx
Solution:
(i) When – 1 ≤ x ≤ 0 ⇒ |x| = – x
When 1 ≥ x ≥ 0 ⇒ |x| = x
∴ \(\int_{-1}^1\) |x| dx = \(\int_{-1}^0\) |x| dx + \(\int_0^1\) |x| dx
= \(\int_{-1}^0\) – x dx + \(\int_0^1\) x dx
= \(\left.\left.-\frac{x^2}{2}\right]_{-1}^0+\frac{x^2}{2}\right]_0^1\)
= – \(\frac{1}{2}\) (0 – 1) + \(\frac{1}{2}\) (1 – 0)
= \(\frac{1}{2}+\frac{1}{2}\) = 1

(ii) \(\int_0^3\) |x – 2| dx
= \(\int_0^2|x-2| d x+\int_2^3|x-2| d x\)
When 0 ≤ x ≤ 2
⇒ x – 2 ≤ 0
When 2 ≤ x ≤ 3, x – 2 ≥ 0
⇒ |x – 2| = x – 2
∴ \(\int_0^3\) |x – 2| dx = \(\int_0^2\) – (x – 2) dx + \(\int_2^3\) (x – 2) dx
= \(\left.\left.-\frac{(x-2)^2}{2}\right]_0^2+\frac{(x-2)^2}{2}\right]_2^3\)
= – \(\frac{1}{2}\) (0 – 4) + \(\frac{1}{2}\) (1 – 0)
= 2 + \(\frac{1}{2}\)
= \(\frac{5}{2}\)

(iii) When 0 ≤ x ≤ 1
⇒ x – 1 ≤ 0
⇒ |x – 1| = – (x + 1)
When 1 ≤ x ≤ 2
⇒ x – 1 ≥ 0
⇒ |x – 1| = x – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 1

= – (1 – 0) + (2 – 1)
= – 1 + 2 – 1 = 0

(iv) Let I = \(\int_{-1}^1 \frac{|x+2|}{x+2}\) dx
When – 1 ≤ x ≤ 1
⇒ 1 ≤ x + 2 ≤ 3
⇒ x + 2 > 0
⇒ |x + 2| = x + 2
= \(\left.\int_{-1}^1 \frac{x+2}{x+2} d x=x\right]_{-1}^1\)
= 1 – (- 1) = 2

(v) Let I = \(\int_{-3}^0 \frac{x+3}{|x+3|}\) dx
When – 3 ≤ x ≤ 0
⇒ x + 3 ≥ 0
⇒ |x + 3| = x + 3
= \(\left.\int_{-3}^0 \frac{x+3}{x+3} d x=x\right]_{-3}^0\)
= 0 – (- 3)
= 0 + 3 = 3

(vi) Let I = \(\int_0^3\) [x] dx
[x] = \(\left\{\begin{array}{lll}
0 & ; & 0 \leq x<1 \\
1 & ; & 1 \leq x<2 \\
2 & ; & 2 \leq x<3
\end{array}\right.\)
= \(\int_0^1[x] d x+\int_1^2[x] d x+\int_2^3[x] d x\)
= \(\int_0^1 0 d x+\int_1^2 d x+\int_2^3 2 d x\)
= 0 + 1 (2 – 1) + 2 (3 – 2) = 3.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 2.
(i) \(\int_{-3}^1 \frac{|x+2|}{x+2}\) dx
(ii) \(\int_{-1}^1\) |x| dx
(iii) \(\int_0^{1.5}\) |x| dx
Solution:
(i) When – 3 ≤ x ≤ – 2, x + 2 ≤ 0
∴ |x + 2| = – (x + 2)
When – 2 ≤ x ≤ 1, x + 2 ≥ 0
∴ |x + 2| = x + 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 2

= – (- 2 + 3) + (1 + 2)
= – 1 + 3
= 2

(ii) When – 1 ≤ x ≤ 0
∴ [x] = – 1
When 0 ≤ x < 1
∴ [x] = 0
Since [x] is discontinuous at x = 0
∴ \(\int_{-1}^1[x] d x=\int_{-1}^0[x] d x+\int_0^1[x] d x\)
= \(\int_{-1}^0-1 d x+\int_0^1 0 \cdot d x\)
= – 1 (0 + 1) + 0 (1 – 0) = – 1

(iii) When 0 ≤ x < 1
∴ [x] = 0
and When 1 ≤ x < 1.5
∴ [x] = 1
and [x] is discontinuous at x = 1
∴ \(\int_0^{1.5}[x] d x=\int_0^1[x] d x+\int_1^{1.5}[x] d x\)
= \(\int_0^1 0 d x+\int_1^{1 \cdot 5} 1 \cdot d x\)
= 0 (1 – 0) + (1.5 – 1) = 0.5

Question 3.
(i) \(\int_{-\pi / 2}^{\pi / 2}\) sin5 x dx = 0
(ii) \(\int_{-\pi / 2}^{\pi / 2}\) x cos2 x dx
(iii) \(\int_{-\pi / 3}^{\pi / 3}\) (x2 sin x + tan3 x) dx
Solution:
(i) Here f(x) = sin5 x
∴ f(- x) = sin5 (- x)
= [sin (- x)]5
= [- sin x]5
= – sin5 x
= – f(x)
Thus f(x) is an odd function
∴ \(\int_{-\pi / 2}^{\pi / 2}\) sin5 x dx = 0

(ii) Let I = \(\int_{-\pi / 2}^{\pi / 2}\) x cos2 x dx
Here f(x) = x cos2 x dx
∴ f(- x) = – x (cos (- x))2
= – x cos2 x
= – f(x)
∴ \(\int_{-a}^a\) f(x) dx = 0
⇒ \(\int_{-\pi / 2}^{\pi / 2}\) x cos2 x dx = 0

(iii) Let f(x) = x2 sin x + tan3 x
∴ f(- x) = (- x)2 sin (- x) + [tan (- x)]3
= – x2 sin x – tan3 x
= – f(x)
∴ \(\int_{-a}^a\) f(x) dx = 0
⇒ \(\int_{-\pi / 3}^{\pi / 3}\) (x2 sin x + tan3 x) dx = 0

Question 3 (old).
(ii) \(\int_{-\pi}^\pi\) (x5 + x cos x) dx
Solution:
Let f(x) = x5 + x cos x
∴ f(- x) = (- x)5 + (- x) cos (- x)
= – [x5 + x cos x]
= – f(x)
Thus f(x) be an odd function.
∴ \(\int_{-a}^a\) f(x) dx = 0
⇒ \(\int_{-\pi}^\pi\) (x5 + x cos x) dx = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 4.
(i) \(\int_{-1}^1 \log \left(\frac{2-x}{2+x}\right)\) dx
(ii) \(\int_{-\pi}^\pi \frac{2 x}{1+\cos x}\) dx
(iii) \(\int_0^\pi\) ecos2 x cos x dx
Solution:
(i) Here f(x) = log \(\left(\frac{2-x}{2+x}\right)\)
∴ f(- x) = log \(\left(\frac{2-x}{2+x}\right)\)
= log \(\left(\frac{2-x}{2+x}\right)\)-1
= – log \(\left(\frac{2-x}{2+x}\right)\)
= – f(x)
[∵ a log b = log ba]
Thus f(x) is an odd function.
∴ \(\int_{-1}^1\) f(x) dx = 0
⇒ \(\int_{-1}^1 \log \left(\frac{2-x}{2+x}\right)\) dx = 0

(ii) Let I = \(\int_{-\pi}^\pi \frac{2 x}{1+\cos x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 3

(iii) Here, f(x) = ecos2 x cos x dx
Also f(π – x) = ecos2 (π – x) cos (π – x)
= ecos2 x (- cos x)
= – f(x)
∴ \(\int_0^\pi\) ecos2 x cos x dx = 0
[∵ \(\int_0^{2 a}\) f(x) dx = 0 if (2a – x) = – f(x)]

Question 5.
(i) \(\int_0^{\pi / 2}\) log (tan x) dx (ISC 2009)
(ii) \(\int_0^{\pi / 2} \frac{\sin x-\cos x}{\sqrt{1-\sin 2 x}}\) dx
(iii) \(\int_0^{2 \pi}\) cos2 x sin x dx
Solution:
(i) Let I = \(\int_0^{\pi / 2}\) log (tan x) dx ………………(1)
∴ I = \(\int_0^{\pi / 2}\) log tan (\(\frac{\pi}{2}\) – x) dx
[∵ \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx]
∴ I = \(\int_0^{\pi / 2}\) log cot x dx ……………(2)
On adding (1) and (2) ; we have
2I = \(\int_0^{\pi / 2}\) log (tan x . cot x) dx
∴ 2I = \(\int_0^{\pi / 2}\) log 1 . dx = 0
⇒ I = 0

(ii) Let I = \(\int_0^{\pi / 2} \frac{\sin x-\cos x}{\sqrt{1-\sin 2 x}}\) dx ………………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 4

On adding (1) and (2) ; we have
2I = 0
⇒ I = 0

(iii) Here, f(x) = cos2 x sin x
∴ f(2π – x) = cos2 (2π – x) sin (2π – x)
= cos2 x (- sin x)
= – f(x)
∴ \(\int_0^{2 \pi}\) f(x) dx = 0
\(\int_0^{2 \pi}\) cos2 x sin x dx = 0
[∵ \(\int_0^{2 a}\) f(x) dx = 0 if f(2a – x) = – f(x)]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 6.
(i) \(\int_0^\pi\) sin2 x cos3 x dx
(ii) \(\int_0^{2 \pi}\) cos5 x dx
(iii) \(\int_{\log \frac{1}{2}}^{\log 2} \sin \left(\frac{e^x+1}{e^x-1}\right)\) dx
Solution:
(i) Let f(x) = sin2 x cos3 x
∴ f(π – x) = sin2 (π – x) cos3 (π – x)
= [sin (π – x)]2 [cos (π – x)]3
= (sin x)2 (- cos x)3
= – sin2 x cos3 x
= – f(x)
Thus, \(\int_0^\pi\) f(x) dx = 0
⇒ \(\int_0^\pi\) sin2 x cos3 x dx
[∵ \(\int_0^{2 a}\) f(x) dx = 0 if f(2a – x) = – f(x)]

(ii) f(x) = cos5 x
∴ f(2π – x) = cos5 (2π – x)
= [cos (2π – x)]5
= cos5 x
= f(x)
\(\int_0^{2 \pi}\) f(x) dx = 2 \(\int_0^\pi\) f(x) dx
⇒ \(\int_0^{2 \pi}\) cos5 x dx = 2 \(\int_0^\pi\) cos5 x dx …………….(1)
[∵ \(\int_0^{2 a}\) f(x) dx = 2 \(\int_0^{a}\) f(x) dx
if f(2a – x) = f(x)]
Since f(π – x) = cos5 (π – x)
= (- cos x)5
= – cos5 x
= – f(x)
Thus, \(\int_0^\pi\) f(x) dx = 0
⇒ \(\int_0^\pi\) cos5 x dx = 0
[∵ \(\int_0^{2 a}\) f(x) dx = 0 if f(2a – x) = – f(x)]
∴ from (1) ;
\(\int_0^{2 \pi}\) cos5 x dx = 2 × 0 = 0

(iii) Let I = \(\int_{\log \frac{1}{2}}^{\log 2} \sin \left(\frac{e^x+1}{e^x-1}\right)\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 5

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 7.
\(\int_0^{2 a}\) f(x) dx = \(\int_0^{2 a}\) f(2a – x) dx
Solution:
Let I = \(\int_0^{2 a}\) f(2a – x) dx
put 2a – x = t
⇒ – dx = dt
When x = 0 ⇒ t = 2a
When x = 2a ⇒ t = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 6

Question 8.
(i) Prove that \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx and hence prove that \(\int_0^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x=\frac{\pi}{4}\).
(ii) Prove that \(\int_0^a\) f(x) dx = \(\int_0^a\) f (a – x) dx. Hence evaluate \(\int_0^{\pi / 2} \frac{d x}{1+\tan x}\).
Solution:
(i) Let I = \(\int_0^a\) f(a – x) dx
put a – x = t
⇒ dx = – dt
When x = 0 ⇒ t = a
When x = a ⇒ t = 0
∴ I = \(\int_0^a\) f(t) (- dt)
= \(\int_0^a\) f(t) dt
[∵ \(\int_a^b\) f(x) dx = – \(\int_a^b\) f(x) dx]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 7

(ii) Let I = \(\int_0^{\pi / 2} \frac{d x}{1+\tan x}\) …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 8

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

By using properties of definite integrals:
(Valuate the following (9 to 21))

Question 9.
(i) \(\int_0^4\) |x – 1| dx (NCERT)
(ii) \(\int_2^8\) |x – 5| dx (NCERT)
(iii) \(\int_{-5}^5\) |x + 2| dx (NCERT)
Solution:
(i) \(\int_0^4\) |x – 1| dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 9

(ii) \(\int_2^8\) |x – 5| dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 10

(iii) \(\int_{-5}^5\) |x + 2| dx
= \(\int_{-5}^{-2}\) |x + 2| dx + \(\int_{-2}^5\) |x + 2| dx
= \(\int_{-5}^{-2}\) – (x + 2) dx + \(\int_{-2}^5\) (x + 2) dx
[∵ – 5 ≤ x < – 2 ⇒ x + 2 < 0
⇒ |x + 2| = – (x + 2)
and – 2 ≤ x < 5 ⇒ x + 2 ≥ 0
⇒ |x + 2| = x + 2]
= \(\left.\left.\frac{-(x+2)^2}{2}\right]_{-5}^{-2}+\frac{(x+2)^2}{2}\right]_{-2}^5\)
= – \(\frac{1}{2}\) [0 – 9] + \(\frac{1}{2}\) [49 – 0] = 29

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 10.
(i) \(\int_0^1\) |2x – 1| dx
(ii) \(\int_{-2}^2\) |2x + 3| dx
(iii) \(\int_1^3\) |x2 – 2x| dx
Solution:
(i) When 0 ≤ x < \(\frac{1}{2}\)
⇒ 2x – 1 < 0
∴ |2x – 1| = – (2x – 1)
When \(\frac{1}{2}\) ≤ x ≤ 1
⇒ 2x – 1 ≥ 0
∴ |2x – 1| = 2x – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 11

(ii) Since |2x + 3| = \(\left\{\begin{aligned}
2 x+3 & \text { if } 2 x+3 \geq 0 \text { i.e. } x \geq-3 / 2 \\
-(2 x+3) & \text { if } 2 x+3<0 \text { i.e. } x<-3 / 2
\end{aligned}\right.\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 12

(iii) When 1 ≤ x < 2, x ≥ 0 ;
x – 2 ≤ 0
∴ |x| = x ;
|x – 2| = – (x – 2)
Thus, |x2 – 2x| = |x| |x – 2|
= – x (x – 2)
= – x2 + 2x
When 2 ≤ x ≤ 3, x ≥ 0 ;
x – 2 ≥ 0
∴ |x| = x ;
|x – 2| = x – 2
Thus, |x2 – 2x| = |x| |x – 2|
= x (x – 2)
= x2 – 2x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 13

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 11.
(i) \(\int_{-\pi / 4}^{\pi / 4}\) |sin x| dx
(ii) \(\int_0^\pi\) |cos x| dx
(iii) \(\int_0^{\pi / 2}\) |cos 2x| dx
Solution:
(i) When – \(\frac{\pi}{4}\) ≤ x < 0
⇒ sin x < 0
∴ |sin x| = – sin x
When 0 ≤ x < \(\frac{\pi}{4}\) then sin x > 0
∴ |sin x| = sin x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 14

(ii) \(\int_0^\pi\) |cos x| dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 15

(iii) We see that x ∈ [0, \(\frac{\pi}{2}\)]
⇒ 2x ∈ [0, π]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 16

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 12.
(i) \(\int_0^{2 \pi}\) |sin x| dx
(ii) \(\int_{-1}^1 \sqrt{|x|-x}\) dx
(iii) \(\int_0^{\pi / 2} \sqrt{1-\sin 2 x}\) dx
Solution:
(i) |sin x| = \(\left\{\begin{array}{c}
\sin x \text { if } 0 \leq x<\pi \\
-\sin x \text { if } \pi \leq x<2 \pi
\end{array}\right.\)
When 0 ≤ x < π, sin x > 0
and when π ≤ x < 2π, sin x < 0
∴ I = \(\int_0^{2 \pi}\) |sin x| dx
= \(\int_0^\pi\) |sin x| dx + \(\int_\pi^{2 \pi}\) |sin x| dx
= \(\int_0^\pi\) sin x dx + \(\int_\pi^{2 \pi}\) – sin x dx
= \(\left.-\cos x]_0^\pi+\cos x\right]_\pi^{2 \pi}\)
= – (cos π – cos 0) + (cos 2π – cos π)
= – (- 1 – 1) + (1 – (- 1))
= – (- 2) + (2)
= 2 + 2 = 4

(ii) When – 1 ≤ x < 0
∴ |x| = – x
When 0 ≤ x ≤ 1
∴ |x| = x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 17

(iii) Let I = \(\int_0^{\pi / 2} \sqrt{1-\sin 2 x}\) dx
= \(\int_0^{\pi / 2} \sqrt{\sin ^2 x+\cos ^2 x-2 \sin x \cos x}\) dx
= \(\int_0^{\pi / 2} \sqrt{(\sin x-\cos x)^2}\) dx
= \(\int_0^{\pi / 2}\) |sin x – cos x| dx

When 0 ≤ x< \(\frac{\pi}{4}\) ⇒ cos x > sin x
⇒ sin x – cos x < 0 ∴ |sin x – cos x| = – (sin x – cos x) and when \(\frac{\pi}{4}\) ≤ x ≤ sin x> cos x
⇒ sin x – cos x > 0
∴ |sin x – cos x| = (sin x – cos x)
= \(\int_0^{\pi / 4}\) – (sin x – cos x) dx + \(\int_{\pi / 4}^{\pi / 2}\) (sin x – cos x) dx
= – [- cos x – sin x\(]_0^{\pi / 4}\) + (- cos x – sin x)\(]_{\pi / 4}^{\pi / 2}\)
= \(\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-(1+0)\right]+\left(0-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\)
= √2 – 1 – 1 +√2
= 2 (√2 – 1).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 12 (old).
(v) \(\int_{-2}^3\) |x2 – 1| dx
Solution:
I = \(\int_{-2}^3\) |x2 – 1| dx
= \(\int_{-2}^3\) |x – 1| |x + 1| dx
When – 2 ≤ x < – 1
∴ x + 1 < 0
⇒ |x + 1| = – (x + 1)
and x – 1 < 0
⇒ |x – 1| = – (x – 1)
Thus |x2 – 1| = {- (x + 1)} {- (x – 1)}
= x2 – 1
When – 1 ≤ x < 1
∴ x + 1 ≥ 0
⇒ |x + 1| = x + 1
x – 1 < 0
⇒ |x – 1| = – (x – 1)
Thus |x2 – 1| = – (x + 1) (x – 1)
= – (x2 – 1)
When 1 ≤ x < 3 x + 1 > 0 ; x – 1 ≥ 0
∴ |x2 – 1| = x2 – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 23

Question 13.
(i) \(\int_0^5\) f(x) dx where f(x) = |x + 2| + |x – 3|
(ii) \(\int_1^3\) (|x – 1| + |x – 2| + |x – 3|) dx
(iii) \(\int_0^3\) f(x) dx, where f(x) = |x| + |x – 1| + |x – 2|
(iv) \(\int_{-\pi / 2}^{\pi / 2}\) (sin |x| – cos |x|) dx
(v) \(\int_0^{3 / 2}\) |x sin πx| dx
Solution:
(i) When 0 ≤ x ≤ 3, x + 2 > 0 ;
x – 3 ≤ 0
∴ |x + 2| = x + 2 ;
|x – 3| = – (x – 3)
Thus f(x) = |x + 2| + |x – 3|
= x + 2 – (x – 3) = 5
When 3 ≤ x ≤ 5 ; x + 2 > 0 ; x – 3 ≥ 0
∴ |x + 2| = x + 2 ;
|x – 3| = x – 3
∴ f(x) = |x + 2| + |x – 3|
= x + 2 + x – 3
= 2x – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 18

(ii) Given f(x) = |x – 1| + |x – 2| + |x – 3|
When 1 ≤ x ≤ 2, x – 1 > 0, x – 2 ≤ 0;
x – 3 ≤ 0
∴ |x – 1| = x – 1 ;
|x – 2| = – (x – 2);
| x — 3 | = – (x – 3)
Thus f(x) = x – 1 – (x – 2) – (x – 3) = – x + 4
When 2 ≤ x ≤ 3; x – 1 > 0, x – 2 ≥ 0
and x – 3 ≤ 0
∴ |x – 1| = x – 1;
|x – 2| = + (x – 2);
|x – 3| = – (x – 3)
Thus, f(x) = (x – 1) + (x – 2) – (x – 3) = x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 19

(iii) \(\int_0^3\) f(x) dx
= \(\int_0^3\) [|x| + |x – 1| + |x – 2|] dx
= \(\int_0^3\) |x| dx + \(\int_0^3\) |x – 1| dx + \(\int_0^3\) |x – 2| dx
= I1 + I2 + I3 …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 20

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 21

(iv) Let f(x) = sin |x| – cos |x|
∴ f(- x) = sin |- x| – cos |- x|
= sin |x| – cos |x|
= f(x)
∴ f(x) be an even function.
∴ I = \(\int_{-\pi / 2}^{\pi / 2}\) f(x) dx
= 2 \(\int_0^{\pi / 2}\) f(x) dx
= 2 \(\int_0^{\pi / 2}\) [sin |x| – cos |x|] dx
[when 0 ≤ x ≤ \(\frac{\pi}{2}\)
∴ |x| = x]
∴ I = 2 \(\int_0^{\pi / 2}\) (sin x – cos x) dx
= 2 [- cos x – sin x\(]_0^{\pi / 2}\)
Thus I = 2 [- 0 – 1 – (- 1 – 0)] = 0

(v) Let I = \(\int_0^{3 / 2}\) |x sin πx| dx
= π |x| |sin πx| dx
When 0 ≤ πx ≤ π
∴ sin πx ≥ 0
⇒ |sin πx| = sin πx
When 1 ≤ x ≤ \(\frac{3}{2}\)
∴ |x| = x
⇒ π ≤ πx ≤ \(\frac{3 \pi}{2}\)
∴ sin πx ≤ 0
⇒ |sin πx| = – sin πx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 22

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 14.
\(\int_1^4\) f(x) dx, where f(x) = \(\left\{\begin{array}{l}
4 x+3,1 \leq x \leq 2 \\
3 x+5,2 \leq x \leq 4
\end{array}\right.\).
Solution:
\(\int_1^4\) f(x) dx = \(\int_1^2\) f(x) dx + \(\int_2^4\) f(x) dx
= \(\int_1^2\) (4x + 3) dx + \(\int_2^4\) (3x + 5) dx
= \(\left.\left.\frac{(4 x+3)^2}{2 \cdot 4}\right]_1^2+\frac{(3 x+5)^2}{2 \cdot 3}\right]_2^4\)
= \(\frac{1}{8}\) [(11)2 – 72] + \(\frac{1}{6}\) [(17)2 – (11)2]
= \(\frac{1}{8}\) [121 – 49] + \(\frac{1}{6}\) [289 – 121]
= \(\frac{72}{8}+\frac{1}{6}\) × 168
= 9 +28 = 37

Question 15.
\(\int_0^9\) f(x) dx, where f(x) = \(\left\{\begin{array}{cc}
\sin x, & 0 \leq x \leq \frac{\pi}{2} \\
1, & \frac{\pi}{2} \leq x \leq 5 \\
e^{x-5}, & 5 \leq x \leq 9
\end{array}\right.\) (ISC 2008)
Solution:
\(\int_0^9\) f(x) dx = \(\int_0^{\pi / 2} f(x) d x+\int_{\pi / 2}^5 f(x) d x+\int_5^9 f(x) d x\)
= \(\int_0^{\pi / 2} \sin x d x+\int_{\pi / 2}^5 d x+\int_5^9 e^{x-5} d x\)
= \(\left.\left.-\cos x]_0^{\pi / 2}+x\right]_{\pi / 2}^5+e^{x-5}\right]_5^9\)
= – (0 – 1) + (5 – \(\frac{\pi}{2}\)) + (e4 – 1)
= 5 – \(\frac{\pi}{2}\) + e4

Question 15 (old).
(i) \(\int_1^2\) [2x] dx
(ii) \(\int_0^3\) [x] dx
(iii) \(\int_{0 \cdot 2}^{3 \cdot 5}\) [x] dx
Solution:
(i) When 1 ≤ x ≤ 2
⇒ 2 ≤ 2x ≤ 4
Clearly [2x] is discontinuous at x = \(\frac{3}{2}\)
∴ \(\int_1^2\) [2x] dx = \(\int_1^{3 / 2}\) [2x] dx + \(\int_{3 / 2}^2\) [2x] dx
[when 1 ≤ x < \(\frac{3}{2}\)
⇒ 2 ≤ 2x < 3
∴ [2x] = 2
when \(\frac{3}{2}\) ≤ x < 2
⇒ 3 ≤ 2x < 4
∴ [2x] = 3]
= \(\int_1^{3 / 2}\) 2 dx + \(\int_{3 / 2}^2\) 3 dx
= 2 (\(\frac{3}{2}\) – 1) + 3 (2 – \(\frac{3}{2}\))
= 2 × \(\frac{1}{2}\) + 3 × \(\frac{1}{2}\)
= \(\frac{5}{2}\)

(ii) Clearly [x] is discontinuous at x = 1, 2
When 0 ≤ x < 1 ; [x] = 0
When 1 ≤ x <2 ; [x] = 1
When 2 ≤ x < 3 ; [x] = 2
∴ \(\int_0^3\) [x] dx = \(\int_0^1\) [x] dx + \(\int_1^2\) [x] dx + \(\int_2^3\) [x] dx
= \(\int_0^1\) 0 . dx + \(\int_1^2\) 1 . dx + \(\int_2^3\) 2 dx
= 0 + 1 (2 – 1) + 2 (3 – 2) = 3

(iii) Clearly [x] is discontinuous x = 1, 2, 3
When 0.2 ≤ x < 1
∴ [x] = 0
When 1 ≤ x < 2;
∴ [x] = 1
When 2 ≤ x < 3
∴ [x] = 2
When 3 ≤ x < 3.5
∴ [x] = 3
∴ \(\int_{0.2}^{3 \cdot 5}\) [x] dx = \(\int_{0.2}^1\) [x] dx + \(\int_1^2\) [x] dx + \(\int_2^3\) [x] dx + \(\int_3^{3 \cdot 5}\) [x] dx
= \(\int_{0.2}^1\) 0 . dx + \(\int_1^2\) 1 . dx + \(\int_2^3\) 2 dx + \(\int_3^{3 \cdot 5}\) 3 dx
∴ \(\int_{0.2}^{3 \cdot 5}\) [x] dx = 0 + 1 (2 – 1) + 2 (3 – 2) + 3 (3.5 – 3)
= 1 + 2 + 1.5 = 4.5.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 16.
(i) \(\int_0^{\pi / 2}\) cos2 x dx (NCERT)
(ii) \(\int_{-\pi / 2}^{\pi / 2}\) sin2 x dx (NCERT)
(iii) \(\int_{-\pi / 2}^{\pi / 2}\) cos4 x dx
Solution:
(i) Let I = \(\int_0^{\pi / 2}\) cos2 x dx ……………(1)
∴ I = \(\int_0^{\pi / 2}\) cos2 (\(\frac{\pi}{2}\) – x) dx
[∵ \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx]
I = \(\int_0^{\pi / 2}\) sin2 x dx ………………..(2)
On adding (1) and (2) ; we have
2I = \(\int_0^{\pi / 2}\) (cos2 x + sin2 x) dx
= \(\int_0^{\pi / 2}\) dx = x\(]_0^{\pi / 2}\)
= \(\frac{\pi}{2}\)
∴ I = \(\frac{\pi}{4}\).

(ii) Here f(x) = sin2 x is an even function.
∴ \(\int_{-a}^a\) f(x) dx = 2 \(\int_0^a\) f(x) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 24

(iii) Let I = \(\int_{-\pi / 2}^{\pi / 2}\) cos4 x dx
= 2 \(\int_0^{\pi / 2}\) cos4 x dx
[Here f(x) = cos4 x dx
⇒ f(- x) = cos4 (- x)
= cos4 x
= f(x)
∴ f(x) be an even function]
Also \(\int_{-a}^a\) f(x) dx = 2 \(\int_0^a\) f(x) dx if f(- x) = f(x)]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 25

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 17.
(i) \(\int_0^1\) x (1 – x)5/2 dx
(ii) \(\int_0^2 x \sqrt{2-x}\) dx
(iii) \(\int_0^3 x^2 \sqrt{3-x}\) dx
Solution:
(i) Let I = \(\int_0^1\) x (1 – x)5/2 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 26

(ii) Let I = \(\int_0^2 x \sqrt{2-x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 27

(iii) \(\int_0^3 x^2 \sqrt{3-x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 28

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 18.
(i) \(\int_0^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\) dx (ISC 2014)
(ii) \(\int_0^{\pi / 2} \frac{d x}{1+\sqrt{\cot x}}\)
(iii) \(\int_0^{\pi / 2} \frac{\sin ^3 x}{\sin ^3 x+\cos ^3 x}\) dx
(iv) \(\int_0^{\pi / 2} \frac{\cos ^5 x}{\cos ^5 x+\sin ^5 x}\) dx
(v) \(\int_0^{\pi / 2} \frac{\tan ^7 x}{\cot ^7 x+\tan ^7 x}\) dx (NCERT Exemplar)
(vi) \(\int_0^{\pi / 2} \frac{\sin ^{3 / 2} x}{\sin ^{3 / 2} x+\cos ^{3 / 2} x}\) (NCERT)
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\) dx ……………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 29

(ii) Let I = \(\int_0^{\pi / 2} \frac{d x}{1+\sqrt{\cot x}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 30

(iii) \(\int_0^{\pi / 2} \frac{\sin ^3 x}{\sin ^3 x+\cos ^3 x}\) dx ……………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 31

(iv) Let I = \(\int_0^{\pi / 2} \frac{\cos ^5 x d x}{\sin ^5 x+\cos ^5 x}\) …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 32

(v) Let I = \(\int_0^{\pi / 2} \frac{\tan ^7 x d x}{\tan ^7 x+\cot ^7 x}\) ………………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 33

(vi) Let I = \(\int_0^{\pi / 2} \frac{\sin ^{3 / 2} x}{\sin ^{3 / 2} x+\cos ^{3 / 2} x}\) dx ………………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 34

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 19.
(i) \(\int_0^{\pi / 2} \frac{\cos ^2 x}{\sin x+\cos x}\) dx
(ii) \(\int_0^{\pi / 2} \frac{x}{\sin x+\cos x}\) dx
(iii) \(\int_0^\pi \frac{x \sin x}{1+3 \cos ^2 x}\) dx
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{\cos ^2 x}{\sin x+\cos x}\) dx ………….. (1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 35

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 36

(ii) \(\int_0^{\pi / 2} \frac{x}{\sin x+\cos x}\) dx ……………..(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 37

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 38

(iii) Let I = \(\int_0^\pi \frac{x \sin x}{1+3 \cos ^2 x}\) dx ……………(1)
We Know that
\(\int_0^a\) f(x) dx = \(\int_0^a\) f (a – x) dx
I = \(\int_0^\pi \frac{(\pi-x) \sin (\pi-x)}{1+3[\cos (\pi-x)]^2}\) dx
= \(\int_0^\pi \frac{(\pi-x) \sin x}{1+3 \cos ^2 x}\) dx …………….(2)
On adding eqn. (1) and eqn. (2) ; we have
2I = \(\int_0^\pi \frac{\pi \sin x}{1+3 \cos ^2 x}\) dx
put cos x = t
⇒ – sin x dx = dt
When x = 0
⇒ t = 1 ;
When x = π
⇒ t = – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 39

Question 19 (old).
(iii) \(\int_0^\pi \frac{4 x \sin x}{1+\cos ^2 x}\) dx
Solution:
Let I = \(\int_0^\pi \frac{4 x \sin x}{1+\cos ^2 x}\) dx ………………(1)
∴ I = \(\int_0^\pi \frac{4(\pi-x) \sin (\pi-x)}{1+\cos ^2(\pi-x)}\) dx
[∵ \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx]
I = \(\int_0^\pi \frac{4(\pi-x) \sin x}{1+\cos ^2 x}\) dx ………………(2)
On adding eqn. (1) and eqn. (2) ; we have
2I = \(\int_0^\pi \frac{4 \pi \sin x}{1+\cos ^2 x}\)
put cos x = t
⇒ – sin x dx = dt
When x = 0 ⇒ t = 1 ;
When x = π ⇒ t = – 1
2I = 4π \(\int_1^{-1} \frac{-d t}{1+t^2}\)
= – 4π \(\int_1^{-1} \frac{d t}{t^2+1^2}\)
= – \(\left.\frac{4 \pi}{1} \tan ^{-1} \frac{t}{1}\right]_1^{-1}\)
= – 4π [tan-1 (- 1) – tan-1 1]
= – 4π [- tan-1 1 – tan-1 1]
[∵ tan-1 (- x) = – tan-1 x]
= + 8π tan-1 1
= 8 × \(\frac{\pi^2}{4}\)
= 2π2
∴ I = π2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 20.
(i) \(\int_2^3 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{5-x}}\) dx
(ii) \(\int_2^8 \frac{\sqrt[3]{x+1}}{\sqrt[3]{x+1}+\sqrt[3]{11-x}}\) dx
(iii) \(\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\) dx
(iv) \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}\) dx
Solution:
(i) Let I = \(\int_2^3 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{5-x}}\) dx …………..(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 40

(ii) Let I = \(\int_2^8 \frac{\sqrt[3]{x+1}}{\sqrt[3]{x+1}+\sqrt[3]{11-x}}\) dx …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 41

(iii) Let I = \(\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x} d x}{\sqrt{\sin x}+\sqrt{\cos x}}\) …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 42

(iv) Let I = \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}\) ……………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 43

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 21.
Prove that \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx. Hence, evaluate :
(i) \(\int_0^a \frac{x \sin x}{1+\cos ^2 x}\) dx
(ii) \(\int_0^{\pi / 2} \frac{x}{\sin x+\cos x}\) dx
(iii) \(\int_0^1\) x2 (1 – x)n dx
Solution:
(i) Let I = \(\int_0^a \frac{x \sin x}{1+\cos ^2 x}\) dx …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 44

(ii) Let I = \(\int_0^{\pi / 2} \frac{x}{\sin x+\cos x}\) dx …………..(1)
We know that
\(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 45

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 46

(iii) Let I = \(\int_0^1\) x2 (1 – x)n dx
We know that
\(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx
∴ I = \(\int_0^1\) (1 – x)2 [1 – (1 – x)]n dx
= \(\int_0^1\) (1 – x)2 xn dx
= \(\int_0^1\) [x2 – 2x + 1] xn dx
= \(\int_0^1\) [xn + 2 – 2xn + 1 + xn] dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 47

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 22.
Find the value of \(\int_0^1\) tan-1 \(\left(\frac{1-2 x}{1+x-x^2}\right)\) dx.
Solution:
Let I = \(\int_0^1\) tan-1 \(\left(\frac{1-2 x}{1+x-x^2}\right)\) dx
= \(\int_0^1 \tan ^{-1}\left[\frac{1-x-x}{1+x(-x)}\right]\) dx
= \(\int_0^1\) [tan-1 (1 – x) – tan-1 x] dx
= \(\int_0^1\) [tan-1 (1 – (1 – x)] dx – \(\int_0^1\) tan-1 x dx
[∵ \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx]
= \(\int_0^1\) (tan-1 x – tan-1 x) dx
= \(\int_0^1\) 0 dx = 0

Question 23.
Prove that \(\int_a^b\) f(x) dx = \(\int_a^b\) f(a + b – x) dx. Hence, evaluate \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}\).
Solution:
Let I = \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}\) …………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 48

Question 24.
(i) If a function f is continuous on [0, a], then show that \(\int_0^a \frac{f(x)}{f(x)+f(a-x)} d x=\frac{a}{2}\).
(ii) If a function f is continuous on [a, b] then show that \(\int_a^b \frac{f(x)}{f(x)+f(a+b-x)} d x=\frac{b-a}{2}\).
Solution:
(i) Let I = \(\int_0^a \frac{f(x)}{f(x)+f(a-x)}\) dx ……………..(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 49

(ii) Let I = \(\int_a^b \frac{f(x)}{f(x)+f(a+b-x)}\) dx ………………(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 50

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 25.
Prove that \(\int_0^{\pi / 2}\) log (sin x) dx = \(\int_0^{\pi / 2}\) log (cos x) dx = – \(\frac{\pi}{2}\) log 2.
Solution:
Let I = \(\int_0^{\pi / 2}\) log (sin x) dx …………..(1)
∴ I = \(\int_0^{\pi / 2}\) log (sin (\(\frac{\pi}{2}\) – x)) dx
[∵ \(\int_0^a\) f(x) dx = \(\int_0^a\) f(a – x) dx]
I = \(\int_0^{\pi / 2}\) log cos x dx …………..(2)
On adding (1) and (2) ; we have
2I = \(\int_0^{\pi / 2}\) (log sin x + log cos x) dx
= \(\int_0^{\pi / 2}\) log (sin x cos x) dx
[∵ log a + log b = log ab]
⇒ 2I = \(\int_0^{\pi / 2} \log \left(\frac{\sin 2 x}{2}\right)\) dx
⇒ 2I = \(\int_0^{\pi / 2}\) log (sin 2x) dx – \(\int_0^{\pi / 2}\) log 2 dx
⇒ 2I = \(\int_0^{\pi / 2}\) log sin 2x dx – log 2 [x\(]_0^{\pi / 2}\)
⇒ 2I = I1 – \(\frac{\pi}{2}\) log 2 ……………(3)
where I1 = \(\int_0^{\pi / 2}\) log (sin 2x) dx
put 2x = t
⇒ 2 dx = dt
When x = 0
⇒ t = 0
When x = \(\frac{\pi}{2}\)
⇒ t = π

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 51

Question 26.
Evaluate the following integrals:
(i) \(\int_0^{\pi / 4}\) log sin 2x dx
(ii) \(\int_0^1 \frac{\log x}{\sqrt{1-x^2}}\) dx
Solution:
(i) Let I = \(\int_0^{\pi / 4}\) log sin 2x dx
put 2x = t
⇒ 2 dx = dt
When x = 0
⇒ t = 0 ;
When x = \(\frac{\pi}{4}\)
⇒ t = \(\frac{\pi}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 52

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 53

(ii) Let I = \(\int_0^1 \frac{\log x}{\sqrt{1-x^2}}\) dx
put x = sin t
⇒ dx = cos t dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = \(\frac{\pi}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18 54

⇒ 2I = \(\int_0^{\pi / 2}\) [log sin 2t – log 2] dt
⇒ 2I = \(\int_0^{\pi / 2}\) log sin 2t – log 2 \(\int_0^{\pi / 2}\) dt
⇒ 2I = \(\int_0^{\pi / 2}\) log sin 2t – \(\frac{\pi}{2}\) log 2
⇒ 2I = I1 – \(\frac{\pi}{2}\) log 2 ………….(2)
where I1 = \(\int_0^{\pi / 2}\) log sin 2t dt
put 2t = θ
⇒ 2 dt = dθ
When t = 0
⇒ θ = 0 ;
When t = \(\frac{\pi}{2}\)
⇒ θ = π
∴ I1 = \(\int_0^{\pi}\) log sin θ . \(\frac{d \theta}{2}\)
= \(\frac{1}{2} \times 2 \int_0^{\pi / 2}\) log sin θ dθ
= \(\int_0^{\pi / 2}\) log sin θ dθ
[∵ \(\int_0^{2 a}\) f(θ) dθ = 2 \(\int_0^{a}\) f(θ) dθ if f (2a – θ) = f(θ)]
∴ I1 = \(\int_0^{\pi / 2}\) log sin t dt = I
∴ from (2);
2I = I – \(\frac{\pi}{2}\) log 2
⇒ I = – \(\frac{\pi}{2}\) log 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.18

Question 27.
Evaluate \(\int_0^\pi\) x log (sin x) dx.
Solution:
Let I = \(\int_0^\pi\) x log (sin x) dx ……….(1)
∴ I = \(\int_0^\pi\) (π – x) log sin (π – x) dx
[∵ \(\int_0^{a}\) f(x) dx = \(\int_0^{a}\) f(a – x) dx]
= \(\int_0^\pi\) (π – x) log sin x dx …………..(2)
On adding (1) and (2) ; we have
2I = \(\int_0^{\pi / 2}\) [π – x + x] log sin x dx
= π \(\int_0^\pi\) log sin x dx
⇒ 2I = 2π \(\int_0^{\pi / 2}\) log sin x dx
[∵ \(\int_0^{2 a}\) f(x) dx = 2 \(\int_0^{a}\) f(x) dx if f (2a – x) = f(x)]
⇒ I = π \(\int_0^{\pi / 2}\) log sin x dx
= πI1 ……………(3)
where I1 = \(\int_0^{\pi / 2}\) log sin x dx ………….(4)
∴ I1 = \(\int_0^{\pi / 2}\) log sin (\(\frac{\pi}{2}\) – x) dx
[∵ \(\int_0^{a}\) f(x) dx = \(\int_0^{a}\) f(a – x) dx]
I1 = \(\int_0^{\pi / 2}\) log cos x dx ………….(5)
On adding (4) and (5) ; we get
2I1 = \(\int_0^{\pi / 2}\) [log sin x + log cos x] dx
= \(\int_0^{\pi / 2} \log \left(\frac{2 \sin x \cos x}{2}\right)\) dx
= \(\int_0^{\pi / 2}\) log son 2x dx – \(\int_0^{\pi / 2}\) log 2 dx
put 2x = t
⇒ 2 dx = dt
When x = 0 ⇒ t = 0 ;
When x = \(\frac{\pi}{2}\) ⇒ t = π
⇒ t = π =\(\frac{1}{2} \int_0^\pi\) (log sin t) dt – (log 2) \(\frac{\pi}{2}\)
= \(\frac{1}{2} \times 2 \int_0^{\pi / 2} \log \sin t d t-\frac{\pi}{2} \log 2\)
2I1 = \(\int_0^{\pi / 2}\) log sin – \(\frac{\pi}{2}\) log 2
[∵ \(\int_a^b\) f(t) dt = \(\int_a^b\) f(x) dx]
⇒ 2I1 = I1 – \(\frac{\pi}{2}\) log 2
⇒ I1 = – \(\frac{\pi}{2}\) log 2
∴ From (3) ;
I = – \(\frac{\pi^2}{2}\) log 2.

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a)

Interactive ISC Mathematics Class 11 OP Malhotra Solutions Chapter 25 Hyperbola Ex 25(a) engage students in active learning and exploration.

S Chand Class 11 ICSE Maths Solutions Chapter 25 Hyperbola Ex 25(a)

Question 1.
Find the equation of the hyperbola whose focus is (1, 1), directrix 2x + 2y = 1, and eccentricity √2.
Solution:
Given Focus of hyperbola be F (1, 1) and directrix be 2x + 2y = 1 and e = √2 be the eccentricity of required hyperbola.
Let P (x, y) be any point on hyperbola.
Then by def. | PF | = e | PM |
\(\sqrt{(x-1)^2+(y-1)^2}\) = \(\sqrt{2}\) \(\frac{|2 x+2 y-1|}{\sqrt{2^2+2^2}}\)
= \(\sqrt{(x-1)^2+(y-1)^2}\) = \(\frac { 1 }{ 2 }\) | 2x + 2y – 1 |
On squaring both sides ; we have
4 [(x – 1)2 + (y – 1)2] = (2x + 2y – 1)2
⇒ 4 [x2 + y2 – 2x – 2y + 2]
⇒ 4x2 + 4y2 + 1 + 8xy – 4y – 4x
⇒ 8xy + 4x + 4y-7 = 0
which is the required eqn. of hyperbola.

Question 2.
Find the equation to the hyperbola whose eccentricity is 2, whose focus is (2, 0) and whose directrix is x – y = 0.
Solution:
Let P (x, y) be any point on hyperbola.
Then by def. | PF | = e | PM |
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a) Img 1
On squaring both sides ; we have
(x- 2)2 + (y2) = 2 (x – y)2
⇒ x2 – 4x + 4 + y2 = 2(x2 + y2 – 2xy)
⇒ x2 + y2 – 4xy + 4x – 4 = 0
which is the required eqn. of hyperbola.

Question 3.
Find the equation to the conic section whose focus is (ae, 0), directrix is the line ex = a, and eccentricity is e. State whether the conic section is an ellipse or a hyperbola.
Solution:
Let P (x, y) be any point on the conic section. Then by def. | PF | = e | PM |
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a) Img 2
On squaring both sides ; we have
[(x – ae)2 + y2] = e2x2 + a2 – 2aex
x2 + a2e2 – 2aex + y2 = e2x2 + a2 – 2aex
⇒ x2(1 – e2) + y2 = a2
⇒ \(\frac{x^2}{a^2}\) + \(\frac{y^2}{a^2\left(1-e^2\right)}\) = 1
which represents an ellipse if e < 1 and hyperbola if e > 1.

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a)

Question 4.
Find the equation of the hyperbola whose axes are along the coordinate axes and which passes through (- 3, 4), and (5, 6).
Solution:
Let the eqn. of hyperbola be
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
Since it is given that eqn. (1) passes through the point (- 3, 4) and (5, 6).
\(\frac{9}{a^2}\) – \(\frac{16}{b^2}\) = 1 …(2)
and \(\frac{25}{a^2}\) – \(\frac{36}{b^2}\) = 1 …(3)
eqn. (2) × 9 – eqn. (3) × 4; we have
(81 – 100) \(\frac{1}{a^2}\) = 5
⇒ a2 = \(\frac{-19}{5}\), which is not possible
Thus we take the eqn. of hyperbola be
\(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1
Now the points (- 3, 4) and (5, 6) lies on eqn. (4); we have
\(\frac{16}{a^2}\) – \(\frac{9}{b^2}\) = 1 …(5)
and \(\frac{36}{a^2}\) – \(\frac{25}{b^2}\) = 1 …(6)
eqn. (5) × 9 – eqn. (6) × 4; we have
(- 81 + 100) \(\frac{1}{b^2}\) = 5 ⇒ b2 = \(\frac{19}{5}\)
∴ from (5) ; \(\frac{16}{a^2}\) – \(\frac{9 \times 5}{19}\) = 1
⇒ \(\frac{16}{a^2}\) = 1 + \(\frac{45}{19}\) ⇒ \(\frac{16}{a^2}\) = \(\frac{64}{19}\)
⇒ a2 = \(\frac{19}{4}\)
Thus eqn. (4) reduces to ;
\(\frac{4 y^2}{19}\) – \(-\frac{5 x^2}{19}\) = 1
⇒ 4 y2 – 5x2 = 19
which is the required eqn. of hyperbola.

Question 5.
Find the eccentricity of the hyperbola whose equation is 2x2 – 3y2 = 15.
Solution:
Given eqn. of hyperbola can be written as ;
\(\frac{x^2}{\frac{15}{2}}\) – \(\frac{y^2}{5}\) = 1
On comparing with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1; we have
a2 = \(\frac{15}{2}\) and b2 = 5
We know that b2 = a2 (e2 – 1)
⇒ 5 = \(\frac{15}{2}\) (e2 – 1) ⇒ e2 – 1 = \(\frac{2}{3}\)
⇒ e2 = \(\frac{5}{3}\) ⇒ e = \(\sqrt{\frac{5}{3}}\) [∴ e > 0]
Thus required eccentricity of hyperbola be \(\sqrt{\frac{5}{3}}\).

Question 6.
Find the eccentricity and the coordinates of the foci of the curve 3x2 – y2 = 4.
Solution:
Given eqn. of curve be
3x2 – y2 = 4 ⇒ \(\frac{x^2}{\frac{4}{3}}\) – \(\frac{y^2}{4}\) = 1
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
we have, a2 = \(\frac{4}{3}\) and b2 = 4
We know that, b2 = a2(e2 – 1)
⇒ 4 = \(\frac{4}{3}\) (e2 – 1)
⇒ e2 = 4
⇒ e = 2 [∵ e > 0]
which gives the required eccentricity of the hyperbola.
Thus coordinates of foci are ( ± ae, 0)
i.e. \(\left( \pm \frac{2}{\sqrt{3}} \times 2,0\right)\) i.e. \(\left( \pm \frac{4}{\sqrt{3}}, 0\right)\).

Question 7.
Find the coordinates of the foci, vertices, eccentricity and the length of the latus rectum of the hyperbola
(i) 16x2 – 9y2 = 576
(ii) \(\frac{y^2}{9}\) – \(\frac{x^2}{27}\) = 1
(iii) 9y2 – 4x2 = 36
(iv) 49y2 – 16x2 = 784
Solution:
(i) Given eqn. be 16x2 – 9y2 = 576
⇒ \(\frac{x^2}{36}\) – \(\frac{y^2}{54}\) = 1
On comparing with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1
We have a2 = 36; b2 = 64 i.e. a = 6 ; b = 8
We know that b2 = a2 (e2 – 1)
where e be the eccentricity of the given hyperbola
⇒ 64 = 36 (e2 – 1)
⇒ \(\frac{64}{36}\) = e2 – 1
⇒ \(\frac{16}{9}\) + 1 = e2
⇒ e2 = \(\frac{25}{9}\)
⇒ e = \(\frac{5}{3}\) (∵ e > 0)
The foci of given hyperbola are (± ae , 0)
i.e. \(\left( \pm 6 \times \frac{5}{3}, 0\right)\) i.e. (± 10, 0)
and vertices of given hyperbola are (± a, 0) i.e. (± 6, 0)
length of transverse axis = 2a = 2 × 6 = 12
length of conjugate axis = 2b = 2 × 8 = 16
length of latus-rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times 64}{6}\) = \(\frac{64}{3}\)

(ii) eqn. of given hyperbola is \(\frac{y^2}{9}\) – \(\frac{x^2}{27}\) = 1 …(1)
On comparing eqn. (1) with
\(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1; we have
a2 = 9 and b2 = 27
Let e be the eccentricity of given hyperbola (1).
We know that b2 = a2 (e2 – 1)
⇒ 27 = 9 (e2 – 1)
⇒ e = 2 (∵ e > 0)
Coordinates of foci are (0, ± ae)
i.e. (0, ± 3 × 2) i.e. (0, ± 6) and Coordinates of vertices are (0, ± a) i.e. (0, ± 3).
and length of latus rectum = \(\frac{2 b^2}{a}\) = 2 × \(\frac{27}{3}\) = 18

(iii) Given eqn. of hyperbola be
9y2 – 4x2 = 36
⇒ \(\frac{y^2}{4}\) – \(\frac{x^2}{9}\) = 1
On comparing with \(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1,
We have a2 = 4 ⇒ a = 2; b2 = 9 ⇒ b = 3
We know that b2 = a2 (e2 – 1)
⇒ 9 = 4 (e2 – 1)
⇒ \(\frac{9}{4}\) = e2 – 1
⇒ e2 = \(\frac{13}{4}\)
⇒ e = \(\frac{\sqrt{13}}{2}\) (∵ e > 0)
The foci of given hyperbola are (0, ± ae)
vertices of given hyperbola are (0, ± a) i.e. (0, ± 2).
length of transverse axis = 2a = 2 × 2 = 4
length of conjugate axis = 2b = 2 × 3 = 6
length of latus-rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times 9}{2}\) = 9

(iv) Given eqn. of hyperbola be
49y2 – 16x2 = 784
⇒ \(\frac{49 y^2}{784}\) – \(\frac{16 x^2}{784}\) = 1
⇒ \(\frac{y^2}{16}\) – \(\frac{x^2}{49}\) = 1
On comparing with \(frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1,
we have a2 = 16 ; b2 = 49 i.e. a = 4, b = 7
We know that b2 = a2 (e2 – 1) where e be the eccentricity of hyperbola
⇒ 49 = 16(e2 – 1) ⇒ \(\frac{49}{16}\) = e2 – 1
⇒ e2 = \(\frac{65}{16}\) ⇒ e = \(\frac{\sqrt{65}}{4}\) (∵ e > 0)
Thus the foci of given hyperbola are
(0, ± ae) i.e. (0, ± 4 × \( \frac{\sqrt{65}}{4}\))
i.e. (0, ± \( \frac{\sqrt{65}\) )
Vertices of given hyperbola are (0, ± a) i.e. (0, ± 4)
length of transverse axis = 2a = 2 × 4 = 8
length of conjugate axis = 2b = 2 × 7 = 14
∴ length of latus rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times 49}{4}\) = \(\frac{49}{2}\)

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a)

Question 8.
In the hyperbola x2 – 4y2 = 4, find the length of the axes, the coordinates of the foci, the eccentricity, and the latus rectum, and the equations of the directrices.
Solution:
Given eqn. of hyperbola can be written as ;
\(\frac{x^2}{4}\) – \(\frac{y^2}{1}\) = 1 …(1)
Comparing eqn. (1) with \(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 ;
we have a2 = 4 ; b2 = 1
Let the eccentricity of eqn. (1) be e.
We know that b2 = a2(e2 – 1)
⇒ 1 = 4 (e2 – 1)
⇒ e2 = \(\frac{5}{4} \)
∴ e = \(\frac{\sqrt{5}}{2}\) (∵ e > 0)
∴ length of conjugate axes = 2a = 2 × 2 = 4
length of transverse axes = 2b = 2 × 1 = 2
Thus, coordinates of foci are (± ae, 0)
i.e. \(\left( \pm 2 \times \frac{\sqrt{5}}{2}, 0\right)\) i.e. \(( \pm \sqrt{5}, 0)\)
and length of latus-rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times 1}{2}\) = 1
Thus, eqns. of directrices are given by x = ± \(\frac{a}{e}\)
i.e. x = ± \(\frac{2}{\sqrt{5}}\) × 2 ⇒ x = ± \(\frac{4}{\sqrt{5}}\)
⇒ √5x ± 4 = 0

Question 9.
Find (a) the eccentricities, (b) the coordinates of the foci (c) the equations of the directrices of the following hyperbolas
(i) \(\frac{(x-1)^2}{9}\) – \(\frac{y^2}{4}\) = 1
(ii) \(\frac{(x+1)^2}{64}\) – \(\frac{(y-2)^2}{36}\) = 1
Solution:
(i) Given eqn. of hyperbola be,
\(\frac{(x-1)^2}{9}\) – \(\frac{y^2}{4}\) = 1 …(1)
shifting the origin to point (1, 0).
putting x – 1= X and y = Y in eqn. (1); we have
\(\frac{\mathrm{X}^2}{9}\) – \(\frac{\mathrm{Y}^2}{4}\) = 1
On comparing eqn. (2) with
\(\frac{\mathrm{X}^2}{a^2}\) – \(\frac{\mathrm{Y}^2}{b^2}\) = 1
We have, a2 = 9 and b2 = 4
We know that b2 = a2 (e2 – 1)
⇒ \(\frac{4}{9}\) = e2 – 1
⇒ e2 = \(\frac{13}{9}\)
⇒ e = \(\frac{\sqrt{13}}{3}\) (∵ e > 0)
The coordinates of foci are (± ae, 0)
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a) Img 3
and eqns. of directrices be given by
X = ± \(\frac{a}{e}\)
i.e. x – 1 = ± \(\frac{3 \times 3}{\sqrt{13}}\)
be the directrices of eqn. (1).

(ii) Given eqn. of hyperbola be ,
\(\frac{(x+1)^2}{64}\) – \(\frac{(y-2)^2}{36}\) = 1 …(1)
Shift the origin to point (- 1, 2);
putting x + 1 = X and y – 2 – Y in eqn. (1); we have
\(\frac{x^2}{64}\) – \(\frac{Y^2}{36}\) = 1 …(2)
On comparing eqn. (2) with
\(\frac{x^2}{a^2}\) – \(\frac{Y^2}{b^2}\) = 1
we have, a2 = 64 and b2 = 36
We know that, b2 = a2 (e2 – 1)
⇒ \(\frac{36}{64}\) = e2 – 1 ⇒ e2 – 1 = \(\frac{9}{16}\)
⇒ e2 = \(\frac{25}{16}\)
⇒ e = \(\frac{5}{4}\) [∵ e > 0]
which is the required eccentricity of given hyperbola (1).
Coordinates of foci of eqn. (2) are given by X = ± ae and Y = 0
⇒ x + 1 = ± 8 × \(\frac{5}{4}\) and y – 2 = 0
⇒ x = – 1 ± 10 and 7 = 2
⇒ x = – 11, 9 and 7 = 2
Thus coordinates of foci of eqn. (1) are (-11, 2) and (9, 2).
eqns. of directrices are given by
x = ± \(\frac{a}{e}\) x + 1 = ± \(\frac{8 \times 4}{5}\)
⇒ x = – 1 ± \(\frac{32}{5}\)
⇒ x = \(\frac{- 37}{5}\) and x = \(\frac{27}{5}\)
i.e. 5x + 37 = 0 and 5x – 27 = 0 are the eqns. of directrices of eqn. (1).

Question 10.
Find the equation of the hyperbola, referred to its axes as the axes of coordinates,
(i) whose transverse and conjugate axes are in length respectively 2 and 3 ;
(ii) whose foci are (2, 0) and (- 2, 0) and eccentricity equal to \(\frac{3}{2}\);
(iii) the distance between whose foci is 4 and whose eccentricity is √ 2;
(iv) whose conjugate axis is 3 and the distance between whose foci is 5 ;
(v) vertices are (0, ± 3) and foci (0, ± 5);
(vi) foci are (± 5, 0) and transverse axis of length 8;
(vii) foci are (0, ± 13) and conjugate axis of length 24 ;
(viii) vertices are (± 7, 0) and e = \(\frac{4}{3}\) ;
(ix) foci are (6, 4) and (- 4, 4) and eccentricity is 2.
Solution:
(i) Let the eqn. of hyperbola be
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
given 2a = 2 and 2b = 3
∴ eqn. (1) reduces to r2 v2
\(\frac{x^2}{1}\) – \(\frac{y^2}{\frac{9}{4}}\)
⇒ 9x2 – 4y2 – 9 = 0
which is the required eqn. of hyperbola,

(ii) Since foci of hyperbola are (± 2, 0) which lies on x-axis.
Thus eqn. of hyperbola can be taken as ;
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
We have clearly found that ae = 2 …(2)
Also given e = \(\frac{3}{2}\) ∴ from (2); a = \(\frac{4}{3}\)
We know that, b2 = a2 (e2 – 1)
⇒ b2 = \(\frac{16}{9}\) \(\left[\frac{9}{4}-1\right]\)
= \(\frac{16}{9}\) × \(\frac{5}{4}\) = \(\frac{20}{9}\)
Thus eqn. (1) reduces to ;
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a) Img 5
which is the required eqn. of hyperbola.

(iii) Let the eqn. of hyperbola be given by
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
given distance between foci = 4
⇒ 2ae = 4 ⇒ ae = 2 …(2)
and given eccentricity of hyperbola be
√2 i.e. e = √2
∴ from (2); a = \(\frac{2}{\sqrt{2}}\) = √2
We know that
b2 = a2 (e2 – 1) = 2 (2 – 1) = 2
Thus eqn. (1) reduces to ;
\(\frac{x^2}{2}\) – \(\frac{y^2}{2}\) = 1
⇒ x2 – y2 = 2
which is the required eqn. of hyperbola.

(iv) Let the eqn. of hyperbola be,
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
given 2b = 3 ⇒ b = \(\frac{3}{2}\)
and 2ae = 5 ⇒ ae = \(\frac{5}{2}\)
We know that b2 = a2 (e2 – 1)
⇒ \(\frac{9}{4}\) = \(\left(\frac{5}{2}\right)^2\) – a2
⇒ a2 = \(\frac{25}{4}\) – \(\frac{9}{4}\) = \(\frac{16}{4}\) = 4
∴ eqn (1) reduces to;
\(\frac{x^2}{4}\) – \(\frac{4y^2}{9}\) = 1
⇒ 9x2 – 16y2 = 36
which is the required eqn. of hyperbola.

(v) Since the foci of required hyperbola are F (0, – 5) and F’ (0, 5) and both lies on y-axis. Thus transverse axis lie along y-axis. Further, mid point of line segment FF’ be (0, 0). Thus origin be the centre of required hyperbola.
Thus, eqn. of hyperbola can be taken as \(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1 …(1)
Since vertices are given by (0, ± 3)
so a = 3
and foci are given by (0, ± 5)
∴ ae = 5 ⇒ 3e = 5 ⇒ e = \(\frac{5}{3}\) > 1
since b2 = a2 (e2 – 1) = 9 \(\left(\frac{25}{9}-1\right)\)
= 9 \(\left(\frac{16}{9}\right)\) = 16
Thus eqn. (1) reduces to, \(\frac{y^2}{9}\) – \(\frac{x^2}{16}\) = 1
which is the required eqn. of hyperbola,

(vi) Since the foci of required hyperbola are F (5, 0) and F’ (- 5, 0) and both lies on x-axis. Thus transverse axes lies along x-axis. Further mid point of line segment FF’ be (0,0). Thus (0,0) be the centre of hyperbola. Hence the eqn. of hyperbola can be taken as,
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
given length of transverse axis = 8
⇒ 2a = 8 ⇒ a = 4
and foci are (± 5, 0)
∴ ae = 5
⇒ e = \(\frac{5}{4}\)
We know that b2 = a2 (e2 – 1)
∴ b2 = 16 \(\left(\frac{25}{16}-1\right)\) = 16 × \(\frac{9}{16}\) = 9
and foci are (± 5, 0) ∴ ae = 5 ∴ e = \(\frac{5}{14}\)
We know that b2 = a2 (e2 – 1)
⇒ b2 = 16\(\left(\frac{25}{16}-1\right)\) = 16 × \(\frac{9}{16}\) = 9
Thus eqn. (1) reduces to \(\frac{x^2}{16}\) – \(\frac{y^2}{9}\) = 1
gives the required eqn. of hyperbola.

(vii) Since foci of required hyperbola be (0, ± 13) which lies on y-axis.
Thus, eqn. of hyperbola can be taken as ;
\(\frac{y^2}{a^2}\) – \(\frac{x^2}{b^2}\) = 1 …(1)
On comparing (0, ± 13) with (0, ± ae)
i.e. ae = 13 …(2)
given 2b = 24 ⇒ b = 12
We know that b2 = a2(e2 – 1)
⇒ 122 = 132 – a2
⇒ a2 = 169 – 144 = 25
∴ eqn. (1) reduces to ; \(\frac{y^2}{25}\) – \(\frac{x^2}{144}\) = 1
⇒ 144y2 – 25x2 = 3600
which is the required eqn. of hyperbola.

(viii) Since the vertices (± 7, 0) of required hyperbola are lies on x-axis.
Let the eqn. of hyperbola be given as under;
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 … (1)
On comparing (± 7,0) with (± a, 0); we
have a = 7 and given e = \(\frac{4}{3}\)
We know that, b2 = a2(e2 – 1)
⇒ b2 = 49\(\left(\frac{16}{9}-1\right)\) = 49 × \(\frac{7}{9}\)
⇒ b2 = \(\frac{343}{9}\)
Thus eqn. (1) reduces to ;
\(\frac{x^2}{49}\) – \(\frac{9y^2}{343}\) = 1 ⇒ 7x2 – 9y2 = 343
which is the required eqn. of hyperbola.

(ix) Given foci are (6, 4) and (- 4, 4).
Let C (α, β) be the centre of hyperbola.
∴ α = \(\frac{6-4}{2}\) = 1; β = \(\frac{4+4}{2}\) = 4
Thus C (1, 4) be the centre of required hyperbola.
Further, ordinates of both foci are identical.
Therefore, transverse axes of hyperbola be parallel to x-axis.
Let the eqn. of hyperbola be given as under:
\(\frac{(x-1)^2}{a^2}\) – \(\frac{(y-4)^2}{b^2}\) = 1 …(1)
∴ Distance between foci
= \(\sqrt{(-4-6)^2+(4-4)^2}\)
= 10 – 2ae
⇒ ae = 5; also given e = 2
⇒ a = \(\frac{5}{2}\)
We know that b2 = a2 (e2 – 1)
b2 = \(\frac{25}{4}\) (4 – 1) = \(\frac{75}{4}\)
∴ eqn. (1) reduces to;
\(\frac{4(x-1)^2}{25}\) – \(\frac{4(y-4)^2}{75}\) = 1
⇒ 12 (x – 1)2 – 4(y – 4)2 = 75
⇒ 12x2 – 24x + 12 – 4y2 + 32y – 64 = 75
⇒ 12x2 – 4y2 – 24x + 32y – 127 = 0
which is the required eqn. of hyperbola.

Question 11.
Find the equation of the hyperbola, referred to its axes as the axes of co- ordinates, whose conjugate axis is 4 and which passes through the point (1, – 2). Find also the equation of the conjugate hyperbola.
Solution:
Since the required hyperbola is having centre at origin and transverse axis along x-axis.
Thus the eqn. of hyperbola can be taken as
\(\frac{x^2}{a^2}\) – \(\frac{y^2}{b^2}\) = 1 …(1)
given length of conjugate axis = 2 b = 5
⇒ b = \(\frac{5}{2}\)
Since eqn. (1) passing through the point (1, – 2).
∴ \(\frac{1}{a^2}\) – \(\frac{4}{b^2}\) = 1
⇒ \(\frac{1}{a^2}\) – \(\frac{4 \times 4}{25}\) = 1
⇒ \(\frac{1}{a^2}\) = 1 + \(\frac{16}{25}\) = \(\frac{41}{25}\)
⇒ a2 = \(\frac{25}{41}\)
Thus, eqn. (1) reduces to,
\(\frac{41 x^2}{25}\) – \(\frac{4 y^2}{25}\) = 1
⇒ 41x2 – 4y2 = 25
which is the required eqn. of hyperbola.
Thus the corresponding eqn. of conjugate hyperbola be
\(\frac{41 x^2}{25}\) – \(\frac{4 y^2}{25}\) = 1
⇒ 41x2 – 4y2 = 25 = 0

OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a)

Question 12.
Find the locus of a point such that the difference of its distances from (4,0) and (- 4, 0) is always equal to 2. Name the curve.
Solution:
Let P (x, y) be any point on the locus s.t | PF | -1 PF’ | = 2
OP Malhotra Class 11 Maths Solutions Chapter 25 Hyperbola Ex 25(a) Img 4
Let e be the eccentricity of curve (1).
Then b2 = a2 (e2 – 1)
⇒ 15 = e2 – 1
⇒ e = 4 > 1 [∵ e > 1]
Thus the required curve represents a hyperbola.

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Chapter Test

Students appreciate clear and concise ISC Mathematics Class 11 OP Malhotra Solutions Chapter 24 Ellipse Chapter Test  that guide them through exercises.

S Chand Class 11 ICSE Maths Solutions Chapter 24 Ellipse Chapter Test

Question 1.
Find the eccentricity of the ellipse
\(\frac{(x-3)^2}{8}\) + \(\frac{(y-4)^2}{6}\) = 1
Solution:
Eqn. of given ellipse be
\(\frac{(x-3)^2}{8}\) + \(\frac{(y-4)^2}{6}\) = 1 …(1)
which is an eqn. of horizontal ellipse Comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
We have a2 = 8 and b2 = 6
We know that b2 = a2 (1 – e2)
⇒ 6 = 8 (1 – e2) ⇒ e2 = 1 – \(\frac{3}{4}\) = \(\frac{1}{4}\)
⇒ e = \(\frac{1}{2}\) (∵ e > 0)
Thus, required eccentricity of given ellipse be \(\frac{1}{2}\)

Question 2.
The distance between the foci of the ellipse 5x2 + 9y2 = 45 is
(a) 2
(b) 3
(c) 4
(d) 5
Solution:
Given eqn. be ellipse can be written as ;
\(\frac{x^2}{9}\) + \(\frac{y^2}{5}\) = 1 …(1)
which is a horizontal ellipse and
On comparing with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1,
where a > b > 0
We have, a2 = 9 ; b2 = 5
Also, b2 = a2(1 – e2)
⇒ \(\frac{5}{9}\) = 1 – e2
⇒ e2 = \(\frac{2}{3}\) (∵ e > 0)
Thus required distance between foci = 2ae
= 2 × 3 × \(\frac{2}{3}\) = 4 ∴ Ans. (c)

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Chapter Test

Question 3.
Find the equation of an ellipse whose latus rectum is 8 and eccentricity is \(\frac{1}{3}\)
Solution:
Given length of latus rectum of an ellipse = \(\frac{2 b^2}{a}\) = 8 ⇒ b2 = 4a …(1)
and e = \(\frac{1}{3}\)
We know that b2 = a2 (1 – e2)
⇒ b2 = a2 \(\left[1-\frac{1}{9}\right]\) = \(\frac{8}{9}\)a2
⇒ 4a = \(\frac{8}{9}\)a2
⇒ a = \(\frac{36}{8}\) = \(\frac{9}{2}\)
∴ from (1); b2 = 4 × \(\frac{9}{2}\) = 18
Thus required eqn. of an ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1; where a > b > 0
i.e. \(\frac{4 x^2}{81}\) + \(\frac{y^2}{18}\) = 1
⇒ 8x2 + 9y2 = 162

Question 4.
Find the equation of the ellipse whose foci are at (- 2, 4) and (4, 4) and major and minor axis are 10 and 8 respectively. Also, find the eccentricity of the ellipse.
Solution:
Since the foci of required ellipse are F (- 2, 4) and F (4, 4)
∴ distance between foci = 2ae = | FF’ |
= \(\sqrt{(4+2)^2+(4-4)^2}\) = 6
⇒ ae = 3 …(1)
Also length of major axis = 2a= 10 ⇒ a = 5
∴ from (1); e = \(\frac{3}{5}\) which gives the required eccentricity of an ellipse.
Since the y-coordinates of both points F and F’ are equal.
∴ major axis of the required ellipse is parallel to x-axis also the mid point of line segment FF’ gives the centre of required ellipse. Thus centre of ellipse be
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse chapter test Img 1
Hence, the eqn. of ellipse having centre (1, 4) and major axis is parallel to x-axis is given by
\(\frac{(x-1)^2}{25}\) +\(\frac{(y-4)^2}{16}\) = 1
⇒ 16 (x – 1)2 + 25 (y – 4)2 = 400
⇒ 16x2 + 25y2 – 32x – 200y + 16 = 0

Question 5.
Find the equation of the ellipse whose 1 eccentricity is \(\frac { 1 }{ 2 }\) and whose foci are at the points (± 2, 0).
Solution:
Given foci of the ellipse be, (± 2, 0) and lies on x-axis. Thus x-axis be the major axis of an ellipse.
Let us take the eqn. of ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
Here ae = 2 and e = \(\frac { 1 }{ 2 }\)
⇒ a = 4
⇒ a2 = 16
We know that b2 = a2(1 -e2)
⇒ b2 = 16 \(\left(1-\frac{1}{4}\right)\) = 16 × \(\frac { 3 }{ 4 }\) = 12
Thus eqn. (1) reduces to ; \(\frac{x^2}{16}\) + \(\frac{y^2}{12}\) = 1
which is the required eqn. of an ellipse.

Question 6.
Find the equation of the ellipse whose centre is the origin, major axis \(\frac { 9 }{ 2 }\) and eccentricity \(\frac{1}{\sqrt{3}}\) where the major axis is the horizontal axis.
Solution:
Since the major axis is the horizontal axis and let the eqn. of ellipse can be taken as
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
given 2a = \(\frac { 9 }{ 2 }\) ⇒ a = \(\frac { 9 }{ 4 }\) and e = \(\frac{1}{\sqrt{3}}\)
We know that b2 = a2 (1 – e2)
⇒ b2 = \(\left(\frac{9}{4}\right)^2\) \(\left[1-\frac{1}{3}\right]\) = \(\frac{81}{16}\) × \(\frac{2}{3}\) = \(\frac{27}{8}\)
Thus eqn. (1) reduces to ;
\(\frac{16 x^2}{81}\) + \(\frac{8 y^2}{27}\) = 1
⇒ 16x2 + 24y2 = 81
which is the required eqn. of an ellipse.

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Chapter Test

Question 7.
Find the equation of the ellipse whose minor axis is 4 and which has a distance of 6 units between foci.
Solution:
Let us consider the eqn. of ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1; where a > b > 0 …(1)
given 2b = 4 ⇒ b = 2
Also distance between foci = 6
⇒ 2ae = 6 ⇒ ae = 3 …(2)
We know that b2 = a2 (1 – e2)
⇒ 4 = a2 – 9 [using eqn. (2)]
⇒ a2 = 13
Thus eqn. (1) reduces to; \(\frac{x^2}{13}\) + \(\frac{y^2}{4}\) = 1
which is the required eqn. of an ellipse.

Question 8.
Find the equation of the ellipse with its centre at (4, – 1), focus at (1, – 1) and given that i passes through (8, 0).
Solution:
Let S’ (α, β) be the other foci of the required ellipse. Thus C (4, – 1) be the mid-point of SS’.
∴ \(\frac{\alpha+1}{2}\) = 4 ⇒ α = 7
and \(\frac{\beta-1}{2}\) = – 1 ⇒ β = – 1
Thus the coordinates of other foci are S’ (7,-1).
Since the ordinate of points S and S’ are equal. Thus major axis is parallel to x-axis and it is a horizontal ellipse.
Let the eqn. of ellipse be
\(\frac{(x-4)^2}{a^2}\) + \(\frac{(y+1)^2}{b^2}\) = 1 …(1)
where a > b > 0
Distance between foci = 2ae = 6 ⇒ ae = 3
We know that b2 – a2 (1 – e2) = a2 – 9
Thus eqn. (1) reduces to ;
\(\frac{(x-4)^2}{a^2}\) + \(\frac{(y+1)^2}{a^2-9}\) = 1 …(2)
eqn. (2) passes through the point (8, 0),
We get \(\frac{(8-4)^2}{a^2}\) + \(\frac{(y+1)^2}{a^2-9}\) = 1
⇒ \(\frac{16}{a^2}\) + \(\frac{1}{a^2-9}\) = 1
⇒ 16 (a2 – 9) + a2 = a2 (a2 – 9)
⇒ 17a2 – 144 = a4 – 9a2
⇒ a4 – 26a2 + 144 = 0
⇒ a4 – 18a2 – 8a2 + 144 = 0
⇒ a2 (a2 – 18) – 8 (a2 – 18) = 0
⇒ (a2 – 18) (a2 – 8) = 0
⇒ a2 = 18, 8
When a2 = 8
∴ b2 = a2 – 9 = 8 – 9 = – 1
which is false
Thus a2 = 18
∴ eqn. (2) reduces, to ;
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse chapter test Img 2

Question 9.
Find the coordinates of the vertices and the foci and the length of the latus rectum of the ellipse 9x2 + 25y2 = 225.
Solution:
Given eqn. of ellipse can be written as
\(\frac{x^2}{25}\) + \(\frac{y^2}{9}\) = 1 …(7)
which is a horizontal ellipse.
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1,
where a > b > 0.
we have, a2 = 25 and b2 = 9
i.e. a = 5 and 6 = 3 (∵ a, b > 0)
Thus the coordinates of vertices are (± ae, 0) i.e. (± 5, 0).
We know that, b2 = a2 (1 – e2)
⇒ 9 = 25 (1 – e2) ⇒ 1 – e2 = \(\frac{9}{25}\)
⇒ e2 = \(\frac{16}{25}\) ⇒ e2 = \(\frac{4}{5}\) (∵ e > 0)
Coordinates of foci are (± ae, 0)
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse chapter test Img 3
and length of latus rectum = \(\frac{2 b^2}{a}\) = 2 × \(\frac{9}{5}\) = \(\frac{18}{5}\) units

Question 10.
Find the eccentricity and the equations of the directrices of the ellipse 7x2 + 16y2 = 112.
Solution:
Given eqn. of ellipse can be written as ;
\(\frac{x^2}{16}\) + \(\frac{y^2}{7}\) = 1 …(1)
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
We have, a2 = 16 b2 = 7
We know that, b2 = a2 (1 – e2)
⇒ \(\frac{7}{16}\) = 1 – e2 ⇒ e2 = 1 – \(\frac{7}{16}\) = \(\frac{9}{16}\)
⇒ e = \(\frac{3}{4}\)
Thus required eqns. of directrices are given
by x = ± \(\frac{a}{e}\) = ± \(\frac{4 \times 4}{3}\) ⇒ 3x ± 16 = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Students can cross-reference their work with ISC Mathematics Class 12 Solutions Chapter 8 Integrals Ex 8.17 to ensure accuracy.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Evaluate the following (1 to 21) definite integrals :

Question 1.
(i) \(\int_{-1}^1\) x2 (x3 + 1)3 dx
(ii) \(\int_0^1\) x ex2 dx (NCERT)
Solution:
(i) Let I = \(\int_{-1}^1\) x2 (x3 + 1)3 dx
put x3 = t
⇒ 3x2 dx = dt
When x = – 1 ⇒ t = – 1
When x = 1 ⇒ t = 1
∴ I = \(\int_{-1}^1\) (t + 1)3 \(\frac{d t}{3}\)
= \(\left.\frac{1}{3} \frac{(t+1)^4}{4}\right]_{-1}^1\)
= \(\frac{1}{12}\) [24 – 04]
= \(\frac{16}{12}\)
= \(\frac{4}{3}\)

(ii) Let I = \(\int_0^1\) x ex2 dx
put x2 = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = 12 = 1
∴ I = \(\int_0^1 e^t \frac{d t}{2}\)
= \(\frac{1}{2}\left[e^t\right]_0^1\)
= \(\frac{1}{2}\) (e – 1).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 2.
(i) \(\int_0^1 \frac{x}{x^2+1}\) dx
(ii) \(\int_0^{\pi / 3} \frac{\cos x}{3+4 \sin x}\) dx
Solution:
(i) Let I = \(\int_0^1 \frac{x}{x^2+1}\) dx
put x2 = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0
and When x – 1 ⇒ t = 1
∴ I = \(\int_0^1 \frac{d t}{2(t+1)}\)
= \(\left.\frac{1}{2} \log |t+1|\right]_0^1\)
= \(\frac{1}{2}\) log 2

(ii) Let I = \(\int_0^{\pi / 3} \frac{\cos x}{3+4 \sin x}\) dx
put sin x = t
⇒ cos x dx =dt
When x = 0 ⇒ t = 0
When x = \(\frac{\pi}{3}\)
⇒ t = \(\frac{\sqrt{3}}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 3.
(i) \(\int_1^2 \frac{3 x}{9 x^2-1}\) dx
(ii) \(\int_a^b \frac{\log x}{x}\) dx
(iii) \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx
Solution:
(i) Let I = \(\int_1^2 \frac{3 x}{9 x^2-1}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 2

(ii) Let I = \(\int_a^b \frac{\log x}{x}\) dx
put log x = t
⇒ \(\frac{1}{x}\) dx = dt
When x = a
⇒ t = log a
When x = b
⇒ t = log b

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 3

(iii) Let I = \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 4.
(i) \(\int_0^2 \frac{6 x+3}{x^2+4}\) dx (NCERT)
(ii) \(\int_0^{\pi / 2} \frac{\sin x}{\sqrt{1+\cos x}}\) dx
Solution:
(i) Let I = \(\int_0^2 \frac{6 x+3}{x^2+4}\) dx
= \(\left.\int_0^2 \frac{6 x d x}{x^2+4}+\frac{3}{2} \tan ^{-1} \frac{x}{2}\right]_0^2\)
put x2 = t in Ist integral
∴ 2x dx = dt
When x = 0 ⇒ t = 0
and When x = 2 ⇒ t = 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 5

(ii) Let I = \(\int_0^{\pi / 2} \frac{\sin x}{\sqrt{1+\cos x}}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 6

Question 5.
(i) \(\int_0^1 \frac{x^5}{1+x^6}\) dx
(ii) \(\int_0^1 \frac{x}{\sqrt{1+x^2}}\) (NCERT Exemplar)
Solution:
(i) Let I = \(\int_0^1 \frac{x^5}{1+x^6}\) dx
put x6 = t
⇒ 6x5 dx = dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = 1
∴ I = \(\left.\int_0^1 \frac{d t}{6(1+t)}=\frac{1}{6} \log (1+t)\right]_0^1\)
= \(\frac{1}{6}\) [log 2 – log 1]
= \(\frac{1}{6}\) log 2

(ii) Let I = \(\int_0^1 \frac{x dx}{\sqrt{1+x^2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 7

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 6.
(i) \(\int_1^e \frac{1+\log x}{2 x}\) dx
(ii) \(\int_0^1 \frac{x}{1+x^4}\) dx
Solution:
(i) Let I = \(\int_1^e \frac{1+\log x}{2 x}\) dx
put log x = t
⇒ \(\frac{1}{x}\) dx = dt
When x = 1
⇒ t = log 1 = 0
When x = e
⇒ t = log e = 1
= \(\int_0^1 \frac{(1+t)}{2} d t\)
= \(\left.\frac{1}{2} \frac{(1+t)^2}{2}\right]_0^1\)
= \(\frac{1}{4}\) [22 – 1]
= \(\frac{3}{4}\)

(ii) Let I = \(\int_0^1 \frac{x}{1+x^4}\) dx
put x2 dx = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = 1
∴ I = \(\int_0^1 \frac{d t}{2\left(1+t^2\right)}\)
= \(\left.\frac{1}{2} \tan ^{-1} t\right]_0^1\)
= \(\frac{1}{2}\) [tan-1 1 – tan-1 0]
= \(\frac{1}{2} \times \frac{\pi}{4}=\frac{\pi}{8}\)

Question 6 (old).
(i) \(\int_0^4 \frac{d x}{\sqrt{x^2+2 x+3}}\)
(ii) \(\int_0^a \frac{d x}{\sqrt{a x-x^2}}\)
Solution:
(i) Let I = \(\int_0^4 \frac{d x}{\sqrt{x^2+2 x+3}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 8

(ii) Let I = \(\int_0^a \frac{d x}{\sqrt{a x-x^2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 9

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 7.
(i) \(\int_0^1 \frac{e^{2 x}}{1+e^{4 x}}\) dx
(ii) \(\int_0^{\pi / 2} \sqrt{\cos x}\) sin3 x dx
Solution:
(i) Let I = \(\int_0^1 \frac{e^{2 x}}{1+e^{4 x}}\) dx
put e2x = t
⇒ 2 e2x dx = dt
When x = 0
⇒ t = 1 ;
When x = 1
⇒ t = e2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 11

(ii) Let I = \(\int_0^{\pi / 2} \sqrt{\cos x}\) sin3 x dx
= \(\int_0^{\pi / 2} \sqrt{\cos x}\) (1 – cos2 x) sin x dx
put cos x = t
⇒ – sin x dx = dt
When x = 0 ⇒ t = 1 ;
When x = \(\frac{\pi}{2}\) ⇒ t = 0

iML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 12

Question 7 (old).
(i) \(\int_{-1}^1 \frac{d x}{x^2+2 x+5}\) (NCERT)
Solution:
Let I = \(\int_{-1}^1 \frac{d x}{x^2+2 x+5}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 10

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 8.
(i) \(\int_0^{\pi / 4}\) sin3 2x cos 2x dx
(ii) \(\int_0^{\pi / 2} \sqrt{\cos x}\) sin5 x dx
Solution:
(i) Let I = \(\int_0^{\pi / 4}\) sin3 2x cos 2x dx
put sin 2x = y
⇒ + 2 cos 2x dx = dy
When x = 0 ⇒ y = 0
and when x = \(\frac{\pi}{4}\)
⇒ y = sin \(\frac{\pi}{2}\) = 1
= \(\int_0^1 y^3\left(+\frac{d y}{2}\right)\)
= \(+\frac{1}{2}\left[\frac{y^4}{4}\right]_0^1\)
= + \(\frac{1}{2}\left(\frac{1}{4}-0\right)\)
= + \(\frac{1}{8}\)

(ii) Let I = \(\int_0^{\pi / 2} \sqrt{\cos x}\) sin5 x dx
= \(\int_0^{\pi / 2} \sqrt{\cos x}\) sin4 x . sin x dx
= \(\int_0^{\pi / 2} \sqrt{\cos x}\) (1 – cos2 x)2 . sin x dx
put cos x = t
⇒ – sin x dx = dt
When x = 0
⇒ t = 1
When x = \(\frac{\pi}{2}\)
⇒ t = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 13

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 9.
(i) \(\int_1^3 \frac{\cos (\log x)}{x}\) dx
(ii) \(\int_1^2 \frac{d x}{x(1+\log x)^2}\)
Solution:
(i) Let I = \(\int_1^3 \frac{\cos (\log x)}{x}\) dx
put log x = t
⇒ \(\frac{1}{x}\) dx = dt
When x = 1
⇒ t = log 1 = 0
and when x = 3
⇒ t = log 3
∴ I = \(\int_0^{\log 3}\) cos t dt
= sin t \(]_0^{\log 3}\)
= sin (log 3) – sin 0
= sin (log 3) – 0
= sin (log 3)

(ii) Let I = \(\int_1^2 \frac{d x}{x(1+\log x)^2}\)
put log x = t
⇒ \(\frac{1}{x}\) dx = dt
When x = 1 ⇒ t = 0
and When x = 2 ⇒ t = log 2
= \(\left.\int_0^{\log 2} \frac{d t}{(1+t)^2}=-\frac{1}{1+t}\right]_0^{\log 2}\)
= – \(\frac{1}{1+\log 2}\) + 1
= \(\frac{-1+1+\log 2}{1+\log 2}\)
= \(\frac{\log 2}{1+\log 2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 10.
(i) \(\int_0^{\pi / 3} \frac{\sec x \tan x}{1+\sec ^2 x}\) dx
(ii) \(\int_0^1\) tan-1 x dx
Solution:
(i) Let I = \(\int_0^{\pi / 3} \frac{\sec x \tan x}{1+\sec ^2 x}\) dx ;
put sec x = t
⇒ sec x tan x dx = dt
When x = 0 ⇒ t = 1
and When x = \(\frac{\pi}{3}\) ⇒ t = 2
∴ I = \(\int_1^2 \frac{d t}{\left(1+t^2\right)}\)
= tan-1 t\(]_1^2\)
= tan-1 2 – tan-1 1
Thus, I = tan-1 2 – \(\frac{\pi}{4}\)

(ii) Let I = \(\int_0^1\) tan-1 x . 1 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 15

Question 10 (old).
(ii) \(\int_4^8 x \sqrt[3]{x-4}\) dx
Solution:
Let I = \(\int_4^8 x \sqrt[3]{x-4}\) dx
put x – 4 = t
⇒ dx = dt
When x = 4 ⇒ t = 0 ;
When x = 8 ⇒ t = 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 14

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 11.
(i) \(\int_0^{1 / 2} \frac{\sin ^{-1} x}{\sqrt{1-x^2}}\) dx
(ii) \(\int_0^1\) sin-1 x dx (NCERT)
Solution:
(i) Let I = \(\int_0^{1 / 2} \frac{\sin ^{-1} x}{\sqrt{1-x^2}}\) dx
put sin-1 x = t
⇒ x = sin t
⇒ dx = cos t dt
When x = 0 ⇒ t = 0 ;
When x = \(\frac{1}{2}\) ⇒ t = \(\frac{\pi}{6}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 16

(ii) Let I = \(\int_0^1\) sin-1 x dx
= \(\int_0^1\) sin-1 x . 1 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 17

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 12.
(i) \(\int_0^4 \frac{d x}{\sqrt{x^2+2 x+3}}\)
(ii) \(\int_0^a \frac{d x}{\sqrt{a x-x^2}}\)
Solution:
(i) Let I = \(\int_0^4 \frac{d x}{\sqrt{x^2+2 x+3}}\)
= \(\int_0^4 \frac{d x}{\sqrt{(x+1)^2+(\sqrt{2})^2}}\)
= log |x + 1 + \(\sqrt{x^2+2 x+3}\)|\(]_0^4\)
= log |5 + \(\sqrt{16+8+3}\)| – log |1 + √3|
= log |5 + 3√3| – log |1 + √3|
= log \(\left|\frac{5+3 \sqrt{3}}{1+\sqrt{3}}\right|\)

(ii) Let I = \(\int_0^a \frac{d x}{\sqrt{a x-x^2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 18

Question 13.
(i) \(\int_0^{\pi / 2} \frac{\cos x}{(1+\sin x)(2+\sin x)}\) dx
(ii) \(\int_0^1 \frac{2 x}{\left(x^2+1\right)\left(x^2+2\right)}\) dx
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{\cos x}{(1+\sin x)(2+\sin x)}\) dx
put sin x = t
⇒ cos x dx = dt
When x = 0 ⇒ t = 0 and
When x = \(\frac{\pi}{2}\) ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 19

(ii) Let I = \(\int_0^1 \frac{2 x}{\left(x^2+1\right)\left(x^2+2\right)}\) dx
put x2 = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0
When x = 1 ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 20

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 14.
(i) \(\int_0^{\pi / 2} \frac{\sin x \cos x}{1+\sin ^4 x}\) dx
(ii) \(\int_0^1 \frac{d x}{2 e^x-1}\)
(iii) \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx
(iv) \(\int_0^a \sin ^{-1}\left(\sqrt{\frac{x}{a+x}}\right)\) dx
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{\sin x \cos x}{1+\sin ^4 x}\) dx
put sin2 x = t
⇒ 2 sin x cos x dx = dt
When x = 0 ⇒ t = 0
and When x = \(\frac{\pi}{2}\)
⇒ t = sin2 \(\frac{\pi}{2}\) = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 21

(ii) Let I = \(\int_0^1 \frac{d x}{2 e^x-1}\)
put 2ex – 1 = t
⇒ ex = \(\frac{t+1}{2}\)
⇒ ex dx = \(\frac{1}{2}\) dt
When x = 0 ⇒ t = 2 – 1 = 1
When x = 1 ⇒ t = 2e – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 22

(iii) Let I = \(\int_0^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 23

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 24

(iv) Let I = \(\int_0^a \sin ^{-1}\left(\sqrt{\frac{x}{a+x}}\right)\) dx
put x = a tan2 θ
⇒ dx = 2a tan θ sec2 θ
When x = 0 ⇒ θ = 0 ;
When x = a ⇒ θ = \(\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 25

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 15.
(i) \(\int_0^1 \cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\) dx
(ii) \(\int_0^1 \tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\) dx
Solution:
(i) put x = tan θ
⇒ dx = sec2 θ dθ
When x = 0 ⇒ θ = 0
and When x = 1 ⇒ θ = \(\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 28

(ii) Let I = \(\int_0^1 \tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\) dx
put x = tan θ
⇒ dx = sec2 θ dθ
When x = 0 ⇒ tan θ = 0 ⇒ θ = 0
When x = 1 ⇒ tan θ = 1 ⇒ θ = \(\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 29

Question 15 (old).
(i) \(\int_0^1\) tan-1 x dx
(ii) \(\int_0^1\) x (tan-1 x)2 dx
Solution:
(i) Let I = \(\int_0^1\) tan-1 x dx
= \(\int_0^1\) tan-1 x . 1 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 26

(ii) L.H.S. = \(\int_0^1\) x (tan-1 x)2 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 27

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 16.
(i) \(\int_0^1 \frac{x \tan ^{-1} x}{\left(1+x^2\right)^2}\) dx
(ii) \(\int_0^{\pi / 2} \frac{d x}{a^2 \sin ^2 x+b^2 \cos ^2 x}\)
Solution:
(i) Let I = \(\int_0^1 \frac{x \tan ^{-1} x}{\left(1+x^2\right)^2}\) dx
put tan-1 x = t
⇒ x = tan t
⇒ dx = sec2 t dt
When x = 0 ⇒ t = 0 and
When x = 1 ⇒ t = tan-1 1 = \(\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 30

(ii) Let I = \(\int_0^{\pi / 2} \frac{1}{a^2 \sin ^2 x+b^2 \cos ^2 x}\)
Divide Numerator and denominator by cos2 x ; we have
I = \(\int_0^{\pi / 2} \frac{\sec ^2 x d x}{a^2 \tan ^2 x+b^2}\)
put tan x = t
⇒ sec2 x dx = dt
When x = 0 ⇒ t = 0
and When x = \(\frac{\pi}{2}\)
⇒ t = tan \(\frac{\pi}{2}\) → ∞

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 31

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 17.
(i) \(\int_0^1 \frac{5 x}{\left(4+x^2\right)^2}\) dx
(ii) \(\int_0^{\pi / 4} \frac{\sin x \cos x}{\sin ^4 x+\cos ^4 x}\) dx (NCERT)
Solution:
(i) Let I = \(\int_0^1 \frac{5 x}{\left(4+x^2\right)^2}\) dx
put x2 = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 32

(ii) Let I = \(\int_0^{\pi / 4} \frac{\sin x \cos x d x}{\sin ^4 x+\cos ^4 x}\)
Divide Numerator and denominator by cos4 x ; we get
I = \(\int_0^{\pi / 4} \frac{\tan x \sec ^2 x d x}{\tan ^4 x+1}\)
put tan2 x = t
⇒ 2 tan x sec2 x dx = dt
When x = 0 ⇒ t = 0 ;
When x = \(\frac{\pi}{4}\) ⇒ t = 1
∴ I = \(\int_0^1 \frac{d t}{2\left(t^2+1\right)}\)
= \(\left.\frac{1}{2} \tan ^{-1} t\right]_0^1\)
= \(\frac{1}{2} \times \frac{\pi}{4}=\frac{\pi}{8}\)

Question 18.
(i) \(\int_0^{\pi / 2} \frac{d x}{5+4 \sin x}\)
(ii) \(\int_0^{\pi / 2} \frac{d x}{4 \cos x+2 \sin x}\)
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{d x}{5+4 \sin x}\)
put tan \(\frac{x}{2}\) = t
⇒ sec2 \(\frac{x}{2}\) \(\frac{1}{2}\) dx = dt
⇒ dx = \(\frac{2 d x}{1+\tan ^2 \frac{x}{2}}\)
= \(\frac{2 d x}{1+t^2}\)
and sin x = \(\frac{2 \tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}\)
= \(\frac{2 t}{1+t^2}\)
∴ When x = 0 ⇒ t = 0
and when x = \(\frac{\pi}{2}\) ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 33

(ii) \(\int_0^{\pi / 2} \frac{d x}{4 \cos x+2 \sin x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 34

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 35

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 36

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 19.
(i) \(\int_0^\pi \frac{d x}{5+3 \cos x}\)
(ii) \(\int_0^\pi \frac{d x}{6-\cos x}\)
Solution:
(i) Let I = \(\int_0^\pi \frac{d x}{5+3 \cos x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 37

(ii) put tan \(\frac{x}{2}\) = t
⇒ sec2\(\frac{x}{2}\) \(\frac{1}{2}\) dx = dt
⇒ dx = \(\frac{2 d t}{1+t^2}\)
and cos x = \(\frac{1-t^2}{1+t^2}\)
When x = 0 ⇒ t = 0
and When x = \(\frac{\pi}{2}\) ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 38

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17

Question 20.
(i) \(\int_0^1 \frac{1-x^2}{x^4+x^2+1}\) dx
(ii) \(\int_0^1 \frac{x^3}{\left(1+x^2\right)^4}\) dx
Solution:
(i) Let I = \(\int_0^1 \frac{1-x^2}{x^4+x^2+1}\) dx
Divide Numerator and denominator by x2 ; we have
= \(\int_0^1 \frac{\left(\frac{1}{x^2}-1\right) d x}{x^2+1+\frac{1}{x^2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 39

(ii) Let I = \(\int_0^1 \frac{x^3}{\left(1+x^2\right)^4}\) dx
put x2 = t
⇒ 2x dx = dt
When x = 0 ⇒ t = 0 ;
When x = 1 ⇒ t = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.17 40

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Access to comprehensive ISC Mathematics Class 11 OP Malhotra Solutions Chapter 24 Ellipse Ex 24 encourages independent learning.

S Chand Class 11 ICSE Maths Solutions Chapter 24 Ellipse Ex 24

Question 1.
Find the eccentricity of the ellipse of which the major axis is double the minor axis.
Solution:
Let a be the length of semi-major and semi-minor axis of the ellipse.
According to given condition, a = 2b
We know that b2 = a2 (1 – e2)
⇒ b2 = 4b2(1 – e2)
⇒ \(\frac { 1 }{ 4 }\) = 1 – e2 ⇒ e2 = 1 – \(\frac { 1 }{ 4 }\) = \(\frac { 3 }{ 4 }\)
⇒ e = \(\frac{\sqrt{3}}{2}\) [∵ e > 0]
Thus required eccentricity of an ellipse be \(\frac{\sqrt{3}}{2}\).

Question 2.
If the minor axis of an ellipse is equal to the distance between its foci, prove that its eccentricity is \(\frac{1}{\sqrt{2}}\).
Solution:
Let e be the eccentricity of an ellipse according to given condition, we have
2b = 2ae ⇒ b = ae
We know that b2 = a2 (1 – e2)
⇒ a2e2 = a2 (1 – e2)
⇒ e2 = 1 – e2
⇒ 2e2 = 1 ⇒ e = \(\frac{1}{\sqrt{2}}\) [∵ e > 0]

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Question 3.
Find the latus rectum and eccentricity of the ellipse whose semi-axes are 5 and 4.
Solution:
Given a = 5 and b = 4
Let e be the eccentricity of an ellipse Then b2 – a2 (1 – e2)
⇒ 16 = 25 (1 – e2)
⇒ 1 – e2 = \(\frac { 16 }{ 25 }\) ⇒ e2 = \(\frac { 9 }{ 25 }\)
⇒ e = \(\frac { 3 }{ 5 }\) (∵ e > 0)
∴ length of latus-rectum = \(\frac{2 b^2}{a}\)
= 2 × \(\frac{4^2}{5}\) = \(\frac { 32 }{ 5 }\)

Question 4.
Find the eccentricity of the ellipse whose latus rectum is (/) half its major axis, (ii) half its minor axis.
Solution:
Let a be the length of semi-major and b be the length of semi-minor axis of an ellipse and e be the eccentricity of an ellipse.
(i) According to given condition,
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 1

Question 5.
If the eccentricity is zero, prove that the ellipse becomes a circle.
Solution:
We know that, b2 = a2 (1 – e2) …(1)
We have given e = 0 ∴ from (1) ; we have
b2 = a2 b = a (∵ b, a > 0)
Thus the given eqn. of ellipse reduces to,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{a^2}\) = 1
⇒ x2 + y2 = a2

Question 6.
Find the equation to the ellipse with axes as the axes of coordinates.
(i) major axis = – 6, minor axis = 4 ;
(ii) which passes through the points (- 3, 1) and (2, – 2) ;
(iii) axes are 10 and 8 and the major axis along
(a) the axis of x,
(b) the axis of y ;
(iv) major axis \(\frac{9}{2}\) and eccentricity \(\frac{1}{\sqrt{3}}\), where the major axis is the horizontal axis ;
(v) latus rectum is 5 and eccentricity \(\frac{2}{3}\),
(vi) foci are (± 4, 0) and e = \(\frac{1}{3}\);
(vii) distance between the foci is 10 and its latus rectum is 15 ;
(viii) distance of the focus from the corresponding directrix is 9 and eccentricity is \(\frac{4}{5}\);
(ix) the minor axis is equal to the distance between the foci, and the latus rectum is 10.
Solution:
(i) Let a and b are the lengths of major and minor axes of an ellipse respectively and the eqn. of ellipse be
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
given 2a = 6 ⇒ a = 3
and 2b = 4 ⇒ b = 2
∴ eqn. (1) reduces to;
\(\frac{x^2}{9}\) + \(\frac{y^2}{4}\) = 1
⇒ 4x2 + 9y2 = 36

(ii) Let the eqn. of ellipse be
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1, where a > b > 0 …(1)
eqn. (1) pass through the points (- 3, 1) and (2, – 2)
∴ \(\frac{9}{a^2}\) + \(\frac{1}{b^2}\) = 1 …(2)
\(\frac{4}{a^2}\) + \(\frac{4}{b^2}\) = 1 …(2)
4 × eqn. (2) – eqn. (3); we have
\(\frac{32}{a^2}\) = 3 ⇒ a2 = \(\frac{32}{3}\)
∴ from (2); \(\frac{9 \times 3}{32}\) + \(\frac{1}{b^2}\) = 1
⇒ \(\frac{1}{b^2}\) = \(\frac{5}{32}\)
⇒ b2 = \(\frac{32}{5}\)
Thus eqn. (2) reduces to;
\(\frac{3 x^2}{32}\) + \(\frac{5 y^2}{32}\) = 1;
⇒ 3x2 + 5y2 = 32

(iii) (a) Here, major axis along x-axis and minor axis along y-axis. Let the eqn. of ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1, where a > b > 0 …(1)
given 2a = 10 ⇒a = 5
and 2b = 8 ⇒ b = 4
∴ eqn. (1) reduces to;
\(\frac{x^2}{25}\) + \(\frac{y^2}{16}\) = 1 ⇒ 16x2 + 25y2 = 400

(b) Here, major axes along y-axis and minor axis along x-axis.
Let the eqn. of ellipse be taken as
\(\frac{x^2}{b^2}\) + \(\frac{y^2}{a^2}\) = 1 …(1)
when a> b> 0
according to given a = 5 and b = 4
∴eqn. (1) reduces to ; \(\frac{x^2}{16}\) + \(\frac{y^2}{25}\) = 1
⇒ 25x2 + 16y2 = 400
which is the required eqn. of an ellipse,

(iv) Since the major axis is the horizontal axis and let the eqn. of ellipse can be taken as
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
wher a > b > 0
given 2a = \(\frac{9}{2}\) ⇒ a = \(\frac{9}{4}\) and e = \(\frac{1}{\sqrt{3}}\)
We know that b2 = a2 (1 – e2 )
⇒ b2 = \(\left(\frac{9}{4}\right)^2\left[1-\frac{1}{3}\right]\) = \(\frac{81}{16}\) × \(\frac{2}{3}\) = \(\frac{27}{8}\)
Thus eqn. (1) redues to ;
\(\frac{16 x^2}{81}\) + \(\frac{8 y^2}{27}\) = 1 ⇒ 16x2 + 24y2 = 81
which is the required eqn. of an ellipse,

(v) Let a and b are the lengths of semi-major and semi-minor axes of an ellipse. Let e be the eccentricity of an ellipse. Let the eqn. of ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
given e = \(\frac{2}{3}\) and \(\frac{2 b^2}{a}\) = 5
⇒ b2 = \(\frac{5 a}{2}\)
We know that, b2 = a2(1 – e2)
⇒ \(\frac{5 a}{2}\) = a2 \(\left(1-\frac{4}{9}\right)\) = \(\frac{5 a^2}{9}\)
⇒ a = \(\frac{9}{2}\)
∴ from (1) ; b2 = \(\frac{5}{2}\) × \(\frac{9}{2}\) = \(\frac{45}{4}\)
Putting the value of a and b in eqn. (1); we have
\(\frac{4 x^2}{81}\) + \(\frac{4 y^2}{45}\) = 1
⇒ \(\frac{20 x^2+36 y^2}{405}\) = 1
⇒ 20x2 + 36y2 = 405
Which is the required eqn. of an ellipse.

(vi) given foci are (± 4, 0) i.e. both foci lies on x-axis and hence x-axis be the major axes.
Thus eqn. of ellipse can be written as \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
Its foci are (± ae, 0) ∴ ae = 4
and also given e = \(\frac{1}{3}\)
∴ a = 12
We know that b2 = a2 (1 – e2)
= 144 \(\left(1-\frac{1}{9}\right)\) = 144 × \(\frac{8}{9}\)
⇒ b2 = 128
Thus, eqn.(1) reduces to;
\(\frac{x^2}{144}\) + \(\frac{y^2}{128}\) = 1 ⇒ 8x2 + 9y2 – 1152 = 0
which is the required eqn. of an ellipse.

(vii) Let a and b be the length of semi-major and semi-minor axes of an ellipse and let the eqn. of ellipse can be taken as
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
given distance between foci = 10
⇒ 2ae = 10 ⇒ ae = 5 …(2)
and \(\frac{2 b^2}{a}\) = 15 ⇒ b2 = \(\frac{15a}{2}\) …(3)
We know that b2 = a2 (1 – e2)
⇒ \(\frac{15a}{2}\) = a2 – 25
⇒ 2a2 – 15a – 50 = 0
⇒ 2a2 – 20a + 5a – 50 = 0
⇒ 2a (a – 10) + 5 (a – 10) = 0
⇒ (a-10) (2a + 5) = 0
⇒ a= 10 (∵ a > 0)
∴ from (3); b2 = \(\frac{15 \times 10}{2}\) = 75
Thus eqn. (1) reduces to ;
\(\frac{x^2}{100}\) + \(\frac{y^2}{75}\) = 1
⇒ 3x2 + 4y2 = 300
which is the required eqn. of an ellipse.

(viii) Given distance of focus (ae, 0) from
directrix x – \(\frac{a}{e}\) = 0 = 9 (given)
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 2

(ix) Let a be the length of semi-major axis and b be the length of semi-minor axis and let e be the eccentricity of required ellipse.
Let the required eqn. of an ellipse be,
\(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 …(1)
where a > b > 0
According to given condition,
2b = 2 ae ⇒ b = ae …(2)
and \(\frac{2 b^2}{a}\) = 10
⇒ b2 = 5a …(3)
We know that, b2 = a2 (1 – e2)
⇒ b2 = a2 – b2
⇒ 2b2 = a2
⇒ 2 × 5a = a2 [using (2) and (3)]
⇒ a = 10
∴ b2 = 5 × 10 = 50
Thus eqn. (1) reduces to ;
\(\frac{x^2}{100}\) + \(\frac{y^2}{50}\) = 1
⇒ x2 + 2y2 = 100
which is the required eqn. of an ellipse.

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Question 7.
Find the equation of the ellipse whose centre is at (- 2, 3) and whose semi-axes are 3 and 2, when the major axis is
(i) parallel to the axes of x ;
(ii) parallel to the axis of y.
Solution:
(i) Since the centre of required ellipse be C (- 2, 3) and mojor axis is parallel to x-axis.
Hence the eqn. of ellipse can be taken as,
\(\frac{(x+2)^2}{9}\) + \(\frac{(y-3)^2}{b^2}\) = 1 …(1)
where a > b > 0
Clearly length of semi-major axis = a = 3
and length of semi-minor axis = b = 2
∴ eqn. (1) reduces to,
\(\frac{(x+2)^2}{9}\) + \(\frac{(y-3)^2}{4}\) = 1
⇒ 4 (x2 + 4x + 4) + 9 (y2 – 6y + 9) = 36
⇒ 4x2 + 9y2 + 16x – 54y + 61 = 0
which is the required eqn. of ellipse.

(ii) The eqn. of ellipse having centre C (-2, 3) and major axis is parallel to y-axis be taken as
\(\frac{(x+2)^2}{b^2}\) + \(\frac{(y-3)^2}{a^2}\) = 1 …(1)
where a > b > 0
given length of semi-major axis = a = 3
and length of semi-minor axis = b = 2
∴ eqn. (1) reduces to,
\(\frac{(x+2)^2}{4}\) + \(\frac{(y-3)^2}{9}\) = 1
⇒ 9 (x + 2)2 + 4(y – 3)2 = 36
⇒ 9x2 + 4y2 + 36x – 24y + 36 = 0
which is the required eqn. of an ellipse.

Question 8.
Find the equation of the ellipse with its centre at (4, – 1), focus at (1, – 1), and passing through (8, 0).
Solution:
Let S’ (α, β) be the other foci of the required ellipse. Thus C (4, -1) be the mid-point of SS’.
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 3
Thus the coordinates of other foci are S’ (7, – 1).
Since the ordinate of points S and S’ are equal. Thus major axis is parallel to x-axis and it is a horizontal ellipse.
Let the eqn. of ellipse be
\(\frac{(x-4)^2}{a^2}\) + \(\frac{(y+1)^2}{b^2}\) = 1 …(1)
where a > b > 0
Distance between foci = 2ae = 6 ⇒ ae = 3
We know that b2 = a2 (1 – e2) = a2 – 9
Thus eqn. (1) reduces to;
\(\frac{(x-4)^2}{a^2}\) + \(\frac{(y+1)^2}{a^2-9}\) = 1 …(2)
eqn. (2) passes through the point (8, 0), we get
\(\frac{(8-4)^2}{a^2}\) + \(\frac{1}{a^2-9}\) = 1
⇒ \(\frac{16}{a^2}\) + \(\frac{1}{a^2-9}\) = 1
⇒ 16 (a2 – 9) + a2 = a2 (a2 – 9)
⇒ 17a2 – 144 = a4 – 9a2
⇒ a4 – 26a2 + 144 = 0
⇒ a4 – 18a2 – 8a2 + 144 = 0
⇒ a2 (a2 – 18)- 8 (a2 – 18) = 0
⇒ (a2 – 18) (a2 – 8) = 0
⇒ a2 =18, 8
When a2 = 8 ∴ b2 = a2 – 9 = 8 – 9 = – 1
which is false
Thus a2 = 18 ∴ eqn. (2) reduces to ;
\(\frac{(x-4)^2}{18}\) + \(\frac{(y+1)^2}{18-9}\) = 1
⇒ \(\frac{(x-4)^2}{18}\) + \(\frac{(y+1)^2}{9}\) = 1
⇒ (x – 4)2 + 2 (y + 1)2 = 18
⇒ x2 + 2y2 – 8x +4y = 0
which is the required eqn. of ellipse.

Question 9.
Find the equation of the ellipse with its centre at (3, 1), vertex at (3, – 2), and eccentricity equal to \(\frac{1}{3}\) .
Solution:
Since the centre of required ellipse be C (3, 1) and vertex A (3, – 2). Let the other vertex of ellipse be A’ (α, β). Then C (3, 1) be the mid point of line segment A A’.
∴ 3 = \(\frac{\alpha+3}{2}\) ⇒ α = 3
and 1 = \(\frac{\beta-2}{2}\) ⇒ β = 3
∴ Coordinates of other vertex of an ellipse be A’ (3, 4).
Also x-coordinates of A and A’ are equal
∴ major axis of required ellipse is parallel to y-axis.
Now a = | CA | = | CA’ | = 3
and e = eccentricity of ellipse = \(\frac{1}{3}\)
∴ b2 = a2 (1 – e)2 = 9 \(\left(1-\frac{1}{9}\right)\) = \(\frac{9 \times 8}{9}\) = 8
Thus required eqn. of ellipse having centre C (3, 1) and major axis parallel toy-axis is given by
\(\frac{(x-3)^2}{b^2}\) + \(\frac{(y-1)^2}{a^2}\) = 1
⇒ \(\frac{(x-3)^2}{8}\) + \(\frac{(y-1)^2}{9}\) = 1
⇒ 9 (x – 3)2+ 8(y – 1)2 = 72
⇒ 9x2 + 8y2 – 54x – 16y + 17 = 0

Question 10.
Find the equation of the ellipse whose centre is at (0, 2) and major axis along the axis of y and whose minor axis is equal to the distance between the foci and whose latus rectum is 2.
Solution:
Let the eqn. of ellipse with centre at (0, 2) and having major axis along y-axis be given by
\(\frac{(x-0)^2}{b^2}\) + \(\frac{(y-2)^2}{a^2}\) = 1 …(1)
where a > b > 0
Also, 2b = 2ae ⇒ b = ae …(2)
Further \(\frac{2 b^2}{a}\) = 2 ⇒ b2 = a …(3)
We know that, b2 = a2 (1 – e2)
⇒ a = a2 – a (using (2) and (3)]
⇒ 2a = a2 ⇒ a = 2 [∵ a > 0]
from (3); b2 = 2
Thus eqn. (1) reduces to ;
\(\frac{x^2}{2}\) + \(\frac{(y-2)^2}{4}\) = 1
⇒ 2x2 + (y – 2)2 = 4
⇒ 2x2 + y2 – 4y = 0
which is the required eqn. of an ellipse.

Question 11.
Find the equation of the ellipse with (i) focus at (1, – 1), directrix x = 0, and e = \(\frac{\sqrt{2}}{2}\);
(ii) focus at (0, 0), eccentricity is \(\frac{5}{6}\), and directrix is 3x + 4y – 1 = 0.
Solution:
(i) Let P (x, y) be any point on the parabola s.t | PF | = e | PM |
\(\sqrt{(x-1)^2+(y+1)^2}\) = \(\frac{\sqrt{2}|x|}{2}\)
On squaring both sides ; we have
(x – 1)2 + (y + 1)2 = \(\frac { 1 }{ 2 }\)x2
⇒ 2 [(x – 1)2 + (y + 1)2] = x2
⇒ x2 + 2y2 – 4x + 4y + 4 = 0
which is the required eqn. of an ellipse.
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 4

(ii) Let P (x, y) be any point on ellipse
Then by def. | PF | = e | PM |
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 5
On squaring both sides ; we have
36(x2 + y2) = (3x + 4y – 1)2
⇒ 36 x2 + 36 y2 = 9x2 + 16y2 + 1 + 24xy – 8y – 6x
⇒ 27x2 + 20y2 – 24xy + 8y + 6x – 1 = 0
which is the required eqn. of an ellipse.

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Question 12.
Find the equation of the ellipse from the following data : axis is coincident with x = 1, centre is (1, 5), focus is (1, 8) and the sum of the focal distances of a point on the ellipse is 12.
Solution:
Let the eqn. of ellipse be
\(\frac{(x-1)^2}{b^2}\) + \(\frac{(y-5)^2}{a^2}\) = 1 …(1)
Since axis of ellipse is coincident with x = 1 i.e. required ellipse be a vertical ellipse, given centre of ellipse be C (1, 5) and Focus be S (1, 8).
∴ | CS | = \(\sqrt{(1-1)^2+(8-5)^2}\) = 3
⇒ ae = 3 …(2)
Further sum of focal distances from any point on the ellipse = |PS| + |PS’| = 2a = 12
⇒ a = 6
∴ from (2); e = \(\frac { 3 }{ 6 }\) = \(\frac { 1 }{ 2 }\)
We know that b2 = a2 (1 – e2)
⇒ b2 = 36\(\left(1-\frac{1}{4}\right)\)
⇒ b2 = 36 × \(\frac { 3 }{ 4 }\) = 27
∴ eqn. (1) reduces to ;
\(\frac{(x-1)^2}{27}\) + \(\frac{(y-5)^2}{36}\) = 1
which is the required eqn. of an ellipse.

Question 13.
A point P (x, y) moves so that the product of the slopes of the two lines joining P to the two points (- 2, 1) and (6, 5) is – 4. Show that the locus is an ellipse and locate its centre.
Solution:
Let the given points are A (- 2, 1) and B (6, 5).
slope of line joining P (x, y) and A (- 2, 1) = \(\frac{y-1}{x+2}\) = m1
slope of line joining P (x, y) and B (6, 5) = \(\frac{y-5}{x-6}\) = m2
product of slopes of both lines = – 4
⇒ \(\left(\frac{y-1}{x+2}\right)\) \(\left(\frac{y-5}{x-6}\right)\) = – 4
⇒ (y – 1) (y – 5) + 4 (x + 2) (x – 6) = 0
⇒ y2 + 4x2 – 6y – 16y – 43 = 0
which is the required eqn. of an ellipse.
4x2 – 16x + y2 – 6y = 43
⇒ 4 (x2 – 4x + 4 – 4) + (y2 – 6y + 9 – 9) = 43
⇒ 4 (x – 2)2 + (y – 3)2 = 68
⇒ \(\frac{(x-2)^2}{17}\) + \(\frac{(y-3)^2}{68}\) = 1
Clearly centre of an ellipse be C (2, 3).

Question 14.
Find the eccentricity, the coordinates of the foci, and the length of the latus rectum of the ellipse 2x2 + 3y2 = 1.
Solution:
Given eqn. of an ellipse be
2x2 + 3y2 = 1
⇒ \(\frac{x^2}{1 / 2}\) + \(\frac{y^2}{1 / 3}\) = 1 …(1)
On comparing with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1,
where a > b > 0
a2 = \(\frac{1}{2}\); b2 = \(\frac{1}{3}\)
We know that b2 = a2 (1 – e2)
⇒ \(\frac{1}{3}\) = \(\frac{1}{2}\) (1 – e2) ⇒ \(\frac{2}{3}\) = 1 – e2
⇒ e2 = 1 – \(\frac{2}{3}\) = \(\frac{1}{3}\)
⇒ e = \(\frac{1}{\sqrt{3}}\) [∵ e > 0]
Thus required eccentricity of an ellipse be \(\frac{1}{\sqrt{3}}\). Foci are given by (± ae, 0)
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 6

Question 15.
For the ellipse, 9x2 + 16y2 = 576, find the semi-major axis, the semi-minor axis, the eccentricity, the coordinates of the foci, the equations of the directrices, and the length of the latus rectum.
Solution:
Given eqn. of an ellipse be
9x2 + 16y2 = 576
⇒ \(\frac{x^2}{64}\) + \(\frac{x^2}{64}\) = 1 ….(1)
On comparing with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1;
where a > b > 0
∴ a2 = 64 and b2 = 36
We know that b2 = a2 (1 – e2)
⇒ 36 = 64 (1 – e2)
⇒ \(\frac{36}{64}\) = 1 – e2
⇒ e2 = 1 – \(\frac{36}{64}\) = 1 – \(\frac{9}{16}\) = \(\frac{7}{16}\)
∴ e = \(\frac{\sqrt{7}}{4}\) [∵ e > 0]
Thus required eccentricity of an ellipse be \(\frac{\sqrt{7}}{4}\)
Here, a = 8 ; b = 6 (∵ a > b > 0)
∴ length of semi major-axis = a = 8
and length of semi minor axis = b = 6
foci are given by (± ae, 0)
i.e. \(\left( \pm 8 \times \frac{\sqrt{7}}{4}, 0\right)\) i.e. \(( \pm 2 \sqrt{7}, 0)\)
length of latus rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times 36}{8}\) = 9
eqns. of directrices are given by x = ±\(\frac{a}{e}\)
i.e. x = ±\(\frac{8}{\sqrt{7}}\) × 4 = ±\(\frac{32}{\sqrt{7}}\).

Question 16.
Find the length of the axes, the co-ordinates of the foci, the eccentricity, and latus rectum of the ellipse 3x2 + 2y2 = 24.
Solution:
Given eqn. of ellipse be 3x2 + 2y2 = 24
⇒ \(\frac{x^2}{8}\) + \(\frac{y^2}{12}\) = 1;
where a > b > 0
On comparing with \(\frac{x^2}{b^2}\) + \(\frac{y^2}{a^2}\) = 1
we have a2 = 12 ; b2 = 8
i.e. a = 2√3
and b = 2√2
length of major axis = 2a = 4√3
and length of minor axis = 2b = 4√2
we know that b2 = a2 (1 – e2)
⇒ 8 = 12(1 – e2)
⇒ 1 – e2 = \(\frac{2}{3}\)
⇒ e2 = \(\frac{1}{3}\)
⇒ e = \(\frac{1}{\sqrt{3}}\) (∵e > 0)
Thus foci of an ellipse be (0, ± ae)
i.e. \(\left(0, \pm 2 \sqrt{3} \times \frac{1}{\sqrt{3}}\right)\) i.e. (0, ± 2)
length of latus-rectum = \(\frac{2 b^2}{a}\) = \(\frac{2 \times(2 \sqrt{2})^2}{2 \sqrt{3}}\) = \(\frac{8}{\sqrt{3}}\)

Question 17.
Find the eccentricity of the ellipse, 4x2 + 9y2 – 8x – 36y + 4 = 0.
Solution:
Given eqn. of an ellipse be,
4x2 + 9y2 – 8x – 36y + 4 = 0
⇒ 4(x2 – 2x + 1 – 1) + 9(y2 – 4y + 4 – 4) + 4 = 0
⇒ 4 [(x – 1)2 – 1] + 9 [y – 2)2 – 4] + 4 = 0
⇒ 4 (x – 1)2 + 9 (y – 2)2 = 36
⇒ \(\frac{(x-1)^2}{9}\) + \(\frac{(y-2)^2}{4}\) = 1 …(1)

On comparing with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1 ; where a > b > 0
Here, a2 = 9 and b2 = 4
we know that, b2 = a2 (1 – e2) ⇒ 4 = 9 (1 – e2) ⇒ 1 – e2 = \(\frac{4}{9}\)
⇒ e2 = \(\frac{5}{9}\) ⇒ e = \(\frac{\sqrt{5}}{3}\) (∵ e > 0)
Thus, required eccentricity of an ellipse be \(\frac{\sqrt{5}}{3}\).

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Question 18.
find the centre of the ellipse, \(\frac{x^2-a x}{a^2}\) + \(\frac{y^2-b y}{b^2}\) = 0.
Solution:
Given eqn. of an ellipse be
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 7

Question 19.
Find the distance between a focus and an extremity of the minor axis of the ellipse
(i) 4x2 + 5y2 = 100
(ii) \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
Solution:
(i) Given eqn. of ellipse be 4x2 + 5y2 = 100
⇒ \(\frac{x^2}{25}\) + \(\frac{y^2}{20}\) = 1 …(1)
On comparing eqn. (1) with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
we have
where a > b > 0
a2 = 25 and b2 = 20
We know that b2 = a2 (1 – e2)
⇒ 20 = 25 (1 – e2)
⇒ \(\frac{4}{5}\) = 1 – e2
⇒ e2 = 1 – \(\frac{4}{5}\) = \(\frac{1}{5}\)
⇒ e = \(\frac{1}{\sqrt{5}}\) (∵ e > 0)
∴ required distance = distance between focus (ae, 0) and (0, b)
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 8

(ii) Given eqn. of ellipse be \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
∴ required distance = \(\sqrt{b^2+a^2 e^2}\) = \(\sqrt{a^2}\) = a
[∵ b2 = a2 (1 – e)2 ⇒ b2 + a2e2 = a2]

Question 20.
Given the ellipse 36x2 + 100y2 = 3600, find the equation and the lengths of the focal radii drawn through the point \(\left(8, \frac{18}{5}\right)\).
Solution:
Given eqn. of ellipse be,
\(\frac{x^2}{100}\) + \(\frac{y^2}{36}\) = 1 …(1)
On comparing with \(\frac{x^2}{a^2}\) + \(\frac{y^2}{b^2}\) = 1
we have a2 = 100; b2 = 36
We know that, b2 = a2 (1 – e2)
⇒ 36 = 100 (1 – e2) ⇒ 1 – e2 = \(\frac{36}{100}\) = \(\frac{9}{25}\)
⇒ e2 = 1 – \(\frac{9}{25}\) = \(\frac{16}{25}\)
⇒ e = \(\frac{4}{5}\) (∵ e > 0)
required lengths of focal radii drawn through the point \(\left(8, \frac{18}{5}\right)\) = a ± ex1
= 10 ± \(\frac{4}{5}\) × 8 = 10 ± \(\frac{32}{5}\) = \(\frac{82}{5}\), \(\frac{18}{5}\)
foci are given by (± ae, 0) i.e. \(\left( \pm 10 \times \frac{4}{5}, 0\right)\) i.e. (± 8, 0)
The eqns. of focal radii joining the points (± 8, 0) and \(\left(8, \frac{18}{5}\right)\) be given by
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 9

Question 21.
The focal distance of an end of the minor axis of the ellipse is k and the distance between the foci is 2h. Find the lengths of the semi-axes.
Solution:
Given, the focal distance of an end of minor axis be k.
The ends of minor axes be (0, ± b).
i.e. given a – ex1 = k ⇒ a – e × 0 = k
⇒ a = k
distance between foci = 2h ⇒ 2ae = 2h
⇒ ae – h ⇒ e = \(\frac{h}{k}\)
We know that b2 = a2 (1 – e2)
⇒ b2 = k2 \(\left[1-\frac{h^2}{k^2}\right]\)
⇒ b2 = k2 – h2
⇒ b = \(\sqrt{k^2-h^2}\)

Question 22.
Find the eccentricity of the ellipse whose latus rectum is 4 and distance of the vertex from the nearest focus is 1.5 cm.
Solution:
Let e be the eccentricity of an ellipse
According to given condition, \(\frac{2 b^2}{a}\) = 4 ⇒ b2 = 2a …(1)
Also, a – ae = 1.5 …(2)
Also we know that b2 = a2 (1 – e2) ⇒ 2a = a2 (1 – e2) …(2)
⇒ 2a = a2 – \(\left(a-\frac{3}{2}\right)^2\)
⇒ 2a = a2 – a2 – \(\frac{9}{4}\) + 3a ⇒ a = \(\frac{9}{4}\)
∴ from (2); \(\frac{9}{4}\) (1 – e) = \(\frac{3}{2}\)
⇒ 1 – e = \(\frac{3}{2}\) × \(\frac{4}{9}\)
⇒ 1 – e = \(\frac{2}{3}\) ⇒ e = \(\frac{1}{3}\)
Thus the required eccentricity of an ellipse be \(\frac{1}{3}\).

Question 23.
The directrix of a conic section is the line 3x + 4y = 1 and the focus S is (- 2, 3). If the eccentricity e is \(\frac{1}{\sqrt{2}}\), find the equation to the conic section.
Solution:
Given focus of ellipse be F (- 2, 3) and eqn. of corresponding directrix is 3x + 4y – 1 = 0 and eccentricity e = \(\frac{1}{\sqrt{2}}\).
Let P (x, y) be any point on ellipse and PM be the ⊥ drawn from P on given directrix. Then by definition of ellipse, we have | PF | = e | PM |
⇒ \(\sqrt{(x+2)^2+(y-3)^2}\) = \(\frac{1}{\sqrt{2}}\) \(\frac{|3 x+4 y-1|}{\sqrt{3^2+4^2}}\)
On squaring both sides ; we have
(x + 2)2 + (y – 3)2 = \(\frac{1}{2}\) × \(\frac{1}{25}\)(3x + 4y – 1)2
⇒ 50 [(x + 2)2 + (y – 3)2] = (3x + 4y – 1)2
⇒ 50 (x2 + y2 + 4x – 6y + 13) = 9x2 + 16y2 + 1 + 24xy – 8y – 6x
⇒ 41x2 + 34x2 – 24xy + 206x – 292y + 649 = 0 which is the required eqn. of ellipse.

Question 24.
Find the equation to the conic section whose focus is (1, – 1), eccentricity is \(\left(\frac{1}{2}\right)\) and the directrix is the line x – y = 3. Is the conic section an ellipse ?
Solution:
Given focus of ellipse be F (1, – 1) and eqn. of directrix be x – y – 3 = 0 and e = \(\frac{1}{2}\)
Let P (x, y) be any point on ellipse. Then by def. of ellipse, we have | PF | = e | PM | where PM be the ⊥ drawn from P on given directrix.
⇒ \(\sqrt{(x-1)^2+(y+1)^2}\) = \(\frac{1}{2}\) \(\frac{|x-y-3|}{\sqrt{1^2+(-1)^2}}\)
On squaring both sides, we have
8 [(x – 1)2 + (y + 1)2] = (x – y – 3)2
⇒ 8(x2 – 2x + y2 + 2y + 2) = x2 + y2 + 9 – 2xy + 6y – 6x
⇒ 7x2 + 7y2 + 2xy – 10x + 10y + 7 = 0 which is the required eqn. of ellipse.

Question 25.
Find the equation of the ellipse whose foci are (- 1, 5) and (5, 5) and whose major axis is 0.
Solution:
Given foci of an ellipse are S (- 1, 5) and S’ (5, 5).
Since ordinates of both foci are same.
Thus, eqn. of axes of an ellipse be parallel to x-axis and let C (α, β) be the coordinates of centre of an ellipse i.e. C (α, β) be the mid-point of SS’.
Thus, α = \(\frac{-1+5}{2}\) and β = \(\frac{5+5}{2}\)
i.e. a = 2 and p = 5
Let the required eqn. of ellipse be
\(\frac{(x-2)^2}{a^2}\) + \(\frac{(y-5)^2}{b^2}\) = 1 …(1)
given 2a = 10 ⇒ a = 5
Also, 2ae = 6 ⇒ ae = 3 ⇒ e = \(\frac{3}{5}\) < 1
We know that b2 = a2 (1 – e2)
⇒ b2 = 25\(\left(1-\frac{9}{25}\right)\) = 16
Thus eqn. (1) reduces to ;
\(\frac{(x-2)^2}{25}\) + \(\frac{(y-5)^2}{16}\) = 1
which is the required eqn. of an ellipse.

OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24

Question 26.
Find the ellipse if its foci are (± 2, 0) and the length of the latus rectum is \(\frac{10}{3}\).
Solution:
Given foci of ellipse are (± 2, 0) and both foci lies on x-axis. So x-axis being the major axes of an ellipse.
Let the eqn. of ellipse be taken as
\(\frac{(x-0)^2}{a^2}\) + \(\frac{(y-0)^2}{b^2}\) = 1 …(1)
Clearly ae = 2 …(2)
and \(\frac{2 b^2}{a}\) = \(\frac{10}{3}\) ⇒ b2 = \(\frac{5}{3}\)a …(3)
We know that b2 = a2 (1 – e2)
⇒ \(\frac{5a}{3}\) = a2 – 4 [using eqn. (2) and (3)]
⇒ 3a2 – 5a – 12 = 0
⇒ (a – 3) (3a + 4) = 0
⇒ a = 3 [∵ a > 0]
∴ from (2); e = \(\frac{2}{3}\) < 1
Thus b2 = \(\frac{5}{3}\) × 3 = 5 [using (3)]
Hence eqn. (1) reduces to ; \(\frac{x^2}{9}\) + \(\frac{y^2}{5}\) = 1
which is the required eqn. of an ellipse.

Question 27.
Find the eccentricity of the ellipse of minor axis 2b, if the line segment joining the foci subtends an angle 2a at the upper vertex. Also, find the equation of the ellipse.
Solution:
Let e be the eccentricity of an ellipse.
In △BOS, we have OS = b tan α
∴ SS’ = 20S ⇒ 2ae – 2b tan α
⇒ ae = b tan α …(1)
OP Malhotra Class 11 Maths Solutions Chapter 24 Ellipse Ex 24 Img 10
We know that b2 = a2 (1 – e2)
⇒ b2 = a2 – a2e2 = a2 – b2 tan2 α
⇒ b2 (1 + tan2 α) = a2
a = b sec α …(2)
From eqn. (1) and eqn. (2); we have
e = \(\frac{b \tan \alpha}{b \sec \alpha}\) = sin α
Thus required eqn. of ellipse becomes ;
\(\frac{x^2}{b^2 \sec ^2 \alpha}\) + \(\frac{y^2}{b^2}\) = 1
⇒ x2 cos2 α + y2 = b2
which is the required eqn.

OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Chapter Test

Students can cross-reference their work with S Chand ISC Maths Class 11 Solutions Chapter 23 Parabola Chapter Test to ensure accuracy.

S Chand Class 11 ICSE Maths Solutions Chapter 23 Parabola Chapter Test

Question 1.
The equation of the directrix of the parabola is 3x + 2y + 1 = 0. The focus is (2, 1). Find the equation of the parabola.
Solution:
Given focus of parabola be F (2,1) and eqn. of directrix be 3x + 2y + 1 = 0.
Let P (x, y) be any point in the plane of cLiiectrix and focus.Let PM be the ⊥ drawn from P on given directrix.
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 1
On squaring both sides, we have
(x – 2)2 + (y – 1)2 = \(\frac{(3 x+2 y+1)^2}{13}\)
⇒ 13 [(x- 2)2 + (y – 1)2] = (3x + 2y + 1)2
⇒ 13 (x2 – 4x + y2 – 2y + 5]
= 9x2 + 4y2 + 1 + 12xy + 4y + 6x
⇒ 4x2 + 9y2 – 12xy – 58x – 30y + 64 = 0
which is the required of parabola.

OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Chapter Test

Question 2.
The points (0, 4) and (0, 2) are the vertex and focus of a parabola. Find the equation of the parabola.
Solution:
Given (0, 4) be the vertex and (0, 2) be focus of the parabola.
Since x-coordinate of both points be same. Hence axis of the parabola is y-axis. Further vertex (0, 4) lies above the focus (0, 2).
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 2
Thus the parabola be a downward parabola, length of latus rectum = 4a = 4 | VF | =4 × 2 = 8
Thus the required eqn. of parabola be
(x – 0)2 = – 4a(y – 4)
⇒ x2 = – 8 (y – 4)
⇒ x2 + 8y – 32 = 0
which is required eqn. of parabola.

Question 3.
Find the equation of the parabola with latus rectum joining points (4, 6) and (4,-2).
Solution:
Given the ends of latus rectum are L (4, 6) and L’ (4, – 2).
Since the x-coordinates of both points L and L’ are equal.
∴ Latus-rectum is || to y-axis and hence axis of the parabola is parallel to x-axis.
[since axis ⊥ to latus rectum] Thus, the eqns. of two possible parabolas taken as, (y – k)2 = ± 4a (x – h) …(1)
where (h, k) be the vertex of the parabolas.
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 3
length of latus-rectum = |LL’|
= \(\sqrt{(4-4)^2+(6+2)^2}\) = 8 = 4 a
∴ eqn. (1) reduces to,
(y – k)2 = ± 8(x – h) …(2)
Since the point L (4, 6) lies on eqn. (2); we have
(6 – k)2 = 8 (4 -h) …(3)
(6 – k)2 = – 8 (4 – h) …(4)
Also, the point L’ (4, – 2) lies on eqn. (2); we have
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 4
On dividing (3) and (5); we have
\(\frac{(6-k)^2}{(2+k)^2}\) = 1 ⇒ (6 – k)2 = (2 + k)2
⇒ 36 + k2 – 12k = k2 + 4k + 4
⇒ 16k = 32 ⇒ k = 2
∴ from (5) ; (- 2 – 2)2 = 8 (4 -h)
⇒ 16 = 8 (4 – h) ⇒ 2 = 4 – h ⇒ h = 2
Hence vertex of parabola be A (2, 2).
Thus eqn. of parabola be
(y – 2)2 = 8(x – 2)
⇒ y2 – 4y – 8x + 20 = 0
On dividing eqn. (4) and (6); we have
k = 2 ∴ from (4); 16 = -8(4 – h)
⇒ – 2 = 4 – h ⇒ h = 6
Thus vertex of required parabola be A’ (6, 2)
∴ eqn. of required parabola be given by (y – 2)2 = – 8(x – 6)
⇒ y2 – 4y + 8x – 44 = 0

Question 4.
Find the equation of the parabola whose focus is (- 1, – 2) and the equation of the directrix is given 4x – 3y + 2 = 0. Also find the equation of the axis.
Solution:
Given focus of parabola be F (- 1, – 2) and eqn. of directrix be
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 5
Let P (x, y) be any point in the plane of directrix and focus. Let PM be the 1 drawn from P (x, y) on given directrix. Then P (x, y) lies on parabola iff PF = PM
OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Ex 23 chapter test Img 6
⇒ 25 [x2 + 2x + y2 + 4y + 5] = 16x2 + 9y2 + 4 – 24xy – 12y + 16x
⇒ 9x2 + 16y2 + 24xy + 34x + 112y + 121 = 0
which is the required eqn. of parabola. Since axis be the line ⊥ to directrix and passing through the focus of parabola, eqn. of line ⊥ to eqn. (1) be
3x + 4y + k = 0 …(2)
and eqn. (2) passes through the focus F (- 1, – 2)
∴ – 3 – 8 + k = 0
⇒ k = 11
∴ from (2); 3x + 4y + 11 = 0 be the required eqn. of axis of parabola.

OP Malhotra Class 11 Maths Solutions Chapter 23 Parabola Chapter Test

Question 5.
Find the equation of the parabola if its vertex is at (0, 0), passes through (5, 2) and is symmetric w.r.t. y-axis.
Solution:
We know that a curve F (x, y) = 0 be symmetric w.r.t. y-axis if
F (-x, y) = F (x, y)
Let the eqn. of parabola having vertex (0, 0) and symmetric w.r.t. y be (x – 0)2 = 4a(y – 0)
i.e. x2 = 4ay …(1)
it passes through the point (5, 2); we have
25 = 8a ⇒ a = \(\frac { 25 }{ 8 }\)
Thus eqn. (1) reduces to ;
x2 = 4 × \(\frac { 25 }{ 8 }\)y = \(\frac { 25 }{ 2 }\)y
which is the required eqn. of parabola.

Question 6.
The parabola y2 = 4ax passes through the point (2, – 6). Find the length of its latus rectum.
Solution:
Given eqn. of parabola be
y2 = 4ax …(1)
Now eqn. (1) passes through the point (2, – 6).
∴ 36 = 4a × 2 ⇒ a = \(\frac { 36 }{ 8 }\) = \(\frac { 9 }{ 2}\)
∴ length of latus rectum = 4a = 4 × \(\frac { 9 }{ 2}\) = 18.

Question 7.
Find the coordinates of the vertex and the focus of the parabola y2 = 4(x + y).
Solution:
Equation of given parabola be
y2 = 4 (x + y)
⇒ y2 – 4y = 4x
⇒ y2 – 4y + 4 = 4x + 4
⇒ (y – 2)2 = 4 (x + 1) …(1)
shifting the origin to point (- 1, 2),
putting x + 1 =X and y – 2 = Y in eqn. (1); we have
Y2 = 4X …(2)
Here 4a – 4
⇒ a = 1
which represents a right handed parabola with axis x-axis.
Vertex of parabola (2) be given by
X = 0; Y = 0
x + 1 = 0 and y – 2 = 0
i.e. x = – 1 and y = 2
Thus (-1, 2) be the vertex of parabola (1). Further, focus of parabola (2) be given by
X = a and Y = 0
⇒ x + 1 = 1 and y – 2 = 0
⇒ x = 0 and y = 2
Thus (0, 2) be the focus of parabola (1).

Question 8.
Find the focus, the equation of the directrix and the length of the latus rectum of the parabola y2 + 12 = 4x+ 4y.
Solution:
Given eqn. of parabola be
y2 – 4x – 4y + 12 = 0
⇒ y2 – 4y = 4x – 12
⇒ y2 – 4y + 4 = 4x – 8
⇒ (y – 2)2 = 4 (x – 2) …(1)
Shifting the origin to point (2, 2) and putting
x – 2 = X and y – 2 = Y in eqn. (1);
we get Y2 = 4X …(2)
which represents a right handed parabola.
On comparing with Y2 = 4aX
∴ length of latus rectum = 4a = 4 units
Focus of eqn. (2) be given by
X = a, Y = 0
⇒ x – 2 = 1 and y – 2 = 0
i.e. x = 3 and y = 2
Thus (3, 2) are the coordinates of focus of eqn. (1).
eqn. of directrix of parabola (2) be given by X = – a ⇒ x – 2 = – 1 ⇒ x = 1
which is the eqn. of directrix.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Access to comprehensive Understanding ISC Mathematics Class 12 Solutions Chapter 8 Integrals Ex 8.16 encourages independent learning.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Very Short answer type questions (1 to 5) :

Evaluate the following (1 to 19) integrals :

Question 1.
(i) \(\int_2^3\) x2 dx (NCERT)
(ii) \(\int_{-1}^1\) (x + 1) dx (NCERT)
(iii) \(\int_2^3 \frac{1}{x}\) dx
Solution:
(i) \(\int_2^3\) x2 dx
= \(\frac{1}{3}\) (33 – 23)
= \(\frac{1}{3}\) (27 – 8)
= \(\frac{19}{3}\)

(ii) \(\int_{-1}^1\) (x + 1) dx
= \(\frac{1}{2}\) [(1 + 1)2 – (- 1 + 1)2]
= \(\frac{1}{2}\) [4 – 0]
= 2

(iii) \(\int_2^3 \frac{1}{x}\) dx = log |x|\(]_2^3\)
= log 3 – log 2
= log \(\frac{3}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 2.
(i) \(\int_{-4}^{-1} \frac{1}{x}\) dx
(ii) \(\int_0^1 \frac{1}{2 x-3}\) dx
(iii) \(\int_0^1 \sqrt{5 x+4}\) dx
Solution:
(i) \(\int_{-4}^{-1} \frac{1}{x}\) dx
= log \(|x|]_{-4}^{-1}\)
= log |- 1| – log |- 4|
= 0 – log 4
= – log 4

(ii) \(\left.\int_0^1 \frac{1}{2 x-3} d x=\frac{\log |2 x-3|}{2}\right]_0^1\)
= \(\frac{1}{2}\) [log |2 – 3| – log |0 – 3|]
= \(\frac{1}{2}\) [log |- 1| – log |- 3|]
= \(\frac{1}{2}\) [0 – log 3]
= – \(\frac{1}{2}\) log 3

(iii) \(\int_0^1 \sqrt{5 x+4}\) dx
= \(\left.\frac{(5 x+4)^{\frac{1}{2}+1}}{5\left(\frac{1}{2}+1\right)}\right]_0^1\)
= \(\left.\frac{2}{15}(5 x+4)^{3 / 2}\right]_0^1\)
= \(\frac{2}{15}\) [93/2 – 43/2]
= \(\frac{2}{15}\) [27 – 8]
= \(\frac{38}{15}\)

Question 3.
(i) \(\int_2^3\) 3x dx (NCERT)
(ii) \(\int_0^{\pi / 4}\) tan x dx (NCERT)
(iii) \(\int_{\pi / 4}^{\pi / 2}\) cot x dx
Solution:
(i) Let I = \(\int_2^3\) 3x dx
= \(\left.\frac{3^x}{\log 3}\right]_2^3\)
= \(\frac{1}{\log 3}\) [33 – 32]
= \(\frac{18}{\log 3}\)

(ii) \(\int_0^{\pi / 4}\) tan x dx
= \(\int_0^{\pi / 4} \frac{\sin x}{\cos x}\) dx
= – log |cos x|\(]_0^{\pi / 4}\)
= – log \(\frac{1}{\sqrt{2}}\)
= – log 2– 1/2
= \(\frac{1}{2}\) log 2

(iii) \(\int_{\pi / 4}^{\pi / 2}\) cot x dx
= \(\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{\sin x}\) dx
= log |sin x| \(]_{\pi / 4}^{\pi / 2}\)
= log sin \(\frac{\pi}{2}\) – log sin \(\frac{\pi}{4}\)
= 0 – log 2– 1/2
= \(\frac{1}{2}\) log 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 4.
(i) \(\int_0^{\pi / 4}\) sin 2x dx (NCERT)
(ii) \(\int_0^{\pi / 2}\) cos 2x dx (NCERT)
(iii) \(\int_0^\pi\) (sin2 \(\frac{x}{2}\) – cos2 \(\frac{x}{2}\)) dx (NCERT)
Solution:
(i) \(\int_0^{\pi / 4}\) sin 2x dx
= – \(\left.\frac{\cos 2 x}{2}\right]_0^{\pi / 4}\)
= – \(\frac{1}{2}\) [cos \(\frac{\pi}{2}\) – cos 0]
= – \(\frac{1}{2}\) (0 – 1)
= \(\frac{1}{2}\)

(ii) \(\int_0^{\pi / 2}\) cos 2x dx
= \(\left.\frac{\sin 2 x}{2}\right]_0^{\pi / 2}\)
= \(\frac{1}{2}\) [sin π – sin 0] = 0

(iii) Let I = \(\int_0^\pi\) (sin2 \(\frac{x}{2}\) – cos2 \(\frac{x}{2}\)) dx
= \(\int_0^\pi\) – cos (2 × \(\frac{x}{2}\)) dx
[∵ cos 2θ = cos2 θ – sin2 θ]
= – \(\int_0^\pi\) cos x dx
= – [sin x]0 π
= – [sin π – sin 0]
= – (0 – 0) = 0

Question 5.
(i) \(\int_0^{1 / \sqrt{2}} \frac{d x}{\sqrt{1-x^2}}\)
(ii) \(\int_0^3 \frac{d x}{9+x^2}\)
(iii) \(\int_1^{\sqrt{3}} \frac{d x}{1+x^2}\)
Solution:
(i) \(\left.\int_0^{1 / \sqrt{2}} \frac{d x}{\sqrt{1-x^2}}=\sin ^{-1} x\right]_0^{1 / \sqrt{2}}\)
= sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\) – sin-1 0
= \(\frac{\pi}{4}\) – 0
= \(\frac{\pi}{4}\)

(ii) \(\int_0^3 \frac{d x}{9+x^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 1

(iii) \(\left.\int_1^{\sqrt{2}} \frac{d x}{1+x^2}=\tan ^{-1} x\right]_1^{\sqrt{3}}\)
= tan-1 √3 – tan-1 1
= \(\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}\)
[∵ tan \(\frac{\pi}{4}\) = 1
and tan \(\frac{\pi}{3}\) = √3]

Question 6.
(i) \(\int_2^3 \frac{d x}{x^2-1}\) (NCERT)
(ii) \(\int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\cos x}\) dx
Solution:
(i) \(\int_2^3 \frac{d x}{x^2-1}\)
= \(\left.\frac{1}{2 \times 1} \log \left|\frac{x-1}{x+1}\right|\right]_2^3\)
= \(\frac{1}{2}\left[\log \left(\frac{1}{2}\right)-\log \left(\frac{1}{3}\right)\right]\)
= \(\frac{1}{2} \log \frac{3}{2}\)

(ii) \(\int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\cos x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 2

Question 6 (old).
(ii) \(\int_0^\pi \frac{1}{1+\sin x} d x\)
Solution:
Let I = \(\int_0^\pi \frac{1}{1+\sin x} d x\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 3

= [(tan π – sec π) – (tan 0 – sec 0)]
= [0 – (- 1)] – (0 – 1)
= 1 + 1 = 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 7.
(i) \(\int_1^2\) (4x3 – 5x2 + 6x + 9) dx (NCERT)
(ii) \(\int_0^8\left(\sqrt{8 x}-\frac{x^2}{8}\right)\) dx
Solution:
(i) \(\int_1^2\) (4x3 – 5x2 + 6x + 9) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 4

(ii) \(\int_0^8\left(\sqrt{8 x}-\frac{x^2}{8}\right)\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 5

Question 8.
(i) \(\int_{\pi / 6}^{\pi / 4}\) cosec x dx (NCERT)
(ii) \(\int_0^{\pi / 4}\) (2 sec2 x + x3 + 2) dx (NCERT)
Solution:
(i) \(\int_{\pi / 6}^{\pi / 4}\) cosec x dx
= log |cosec x – cot x|\(]_{\pi / 6}^{\pi / 4}\)
= log |cosec \(\frac{\pi}{4}\) – cot \(\frac{\pi}{4}\)| – log |cosec \(\frac{\pi}{6}\) – cot \(\frac{\pi}{6}\)|
= log |√2 – 1| – log |2 – √3|
= log |√2 – 1| – log |2 – √3|

(ii) \(\int_0^{\pi / 4}\) (2 sec2 x + x3 + 2) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 6

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 9.
(i) \(\int_0^1 \frac{d x}{\sqrt{1+x}-\sqrt{x}}\) (NCERT)
(ii) \(\int_0^1 \frac{1-x}{1+x}\) dx
Solution:
(i) Let I = \(\int_0^1 \frac{d x}{\sqrt{1+x}-\sqrt{x}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 7

(ii) Let I = \(\int_0^1 \frac{1-x}{1+x}\) dx
= – \(\int_0^1 \frac{x-1}{x+1}\) dx
= – \(\int_0^1 \frac{x+1-2}{x+1}\) dx
= – \(\int_0^1\left[1-\frac{2}{x+1}\right]\) dx
= – [x – 2 log |x + 1|\(]_0^1\)
= – [(1 – 2 log |1 + 1|) – (0 – 2 log |0 + 1|)]
= – 1 + 2 log 2 – (0 – 2 log 1)
= – 1 + 2 log 2 – 0
= – 1 + 2 log 2

Question 10.
(i) \(\int_0^{\pi / 2}\) sin3 x dx
(ii) \(\int_0^{\pi / 4}\) (tan x + cot x)-1 dx (ISC 2003)
Solution:
(i) I = \(\int_0^{\pi / 2}\) sin3 x dx
= \(\int_0^{\pi / 2}\) sin2 x sin x dx
= \(\int_0^{\pi / 2}\) (1 – cos2 x) sin x dx
put cos x = t
⇒ – sin x dx = dt
When x = 0
⇒ t = cos 0 = 1
and when x = π/2
⇒ t = cos π/2 = 0
∴ I = \(\int_1^0\) (1 – t2) (- dt)
= – \(\left[t-\frac{t^3}{3}\right]_1^0\)
= \(\left[\frac{t^3}{3}-t\right]_1^0\)
= (0 – 0) – (\(\frac{1}{3}\) – 1)
= \(\frac{2}{3}\)

(ii) Let I = \(\int_0^{\pi / 4}\) (tan x + cot x)-1 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 8

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 11.
(i) \(\int_0^{\pi / 2} \sqrt{1-\cos 2 x}\) dx
(ii) \(\int_0^\pi \sqrt{1+\sin x}\) dx
Solution:
(i) \(\int_0^{\pi / 2} \sqrt{1-\cos 2 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 9

= – √2 (cos \(\frac{\pi}{2}\) – cos 0)
= – √2 (0 – 1)
= √2

(ii) I = \(\int_0^\pi \sqrt{1+\sin x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 10

Question 12.
(i) \(\int_0^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}\) dx
(ii) \(\int_0^{\pi / 4} \frac{\cos 3 x}{\cos x}\) dx
Solution:
(i) Let I = \(\int_0^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 11

(ii) Let I = \(\int_0^{\pi / 4} \frac{\cos 3 x}{\cos x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 12

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 13.
(i) \(\int_0^{\pi / 4}\) sin 2x sin 3x dx
(ii) \(\int_0^{\pi / 2}\) (a2 cos2 x + b2 sin2 x) dx
Solution:
(i) Let I = \(\int_0^{\pi / 4}\) sin 2x sin 3x dx
= \(\frac{1}{2}\) \(\int_0^{\pi / 4}\) (2 sin 3x sin 2x) dx
= \(\frac{1}{2}\) \(\int_0^{\pi / 4}\) (cos x – cos 5x) dx
= \(\frac{1}{2}\left[\sin x-\frac{\sin 5 x}{5}\right]_0^{\pi / 4}\)
= \(\frac{1}{2}\left[\sin \frac{\pi}{4}-\frac{1}{5} \sin \frac{5 \pi}{4}-0+0\right]\)
= \(\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{5 \sqrt{2}}\right)=\frac{3}{5 \sqrt{2}}\)

(ii) Let I = \(\int_0^{\pi / 2}\) (a2 cos2 x + b2 sin2 x) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 13

Question 14.
(i) \(\int_{\pi / 3}^{\pi / 4}\) (tan x + cot x)2 dx
(ii) \(\int_1^2 \frac{d x}{(x+1)(x+2)}\)
Solution:
(i) Let I = \(\int_{\pi / 3}^{\pi / 4}\) (tan x + cot x)2 dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 14

(ii) \(\int_1^2 \frac{d x}{(x+1)(x+2)}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 15

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 15.
(i) \(\int_1^2 \frac{x+3}{x(x+2)}\) dx
(ii) \(\int_1^3 \frac{d x}{x^2(x+1)}\) (NCERT)
Solution:
(i) Let I = \(\int_1^2 \frac{x+3}{x(x+2)}\) dx
= \(\frac{1}{2} \int_1^2 \frac{2 x+6}{x^2+2 x}\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 16

(ii) Let \(\frac{1}{x^2(x+1)}=\frac{\mathrm{A}}{x}+\frac{\mathrm{B}}{x^2}+\frac{\mathrm{C}}{x+1}\) ……………….(1)
Multiply eq. (1) by x2 (x + 1) ; we have
1 = Ax (x + 1) + B ( x + 1) + Cx2 ………………..(2)
putting x = 0 in eqn. (2) ; we have 1 = B
puiting x = – 1 ineqn. (2); we have 1 = C
coeff. of x2 ;
0 = A + C = A – 1
∴ from (1); we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 17

Question 15 (old).
(i) \(\int_1^2 \frac{d x}{(x+1)\left(x^2-7 x+12\right)}\)
(ii) \(\int_1^2 \frac{5 x^2}{x^2+4 x+3}\) dx
Solution:
(i) Let \(\frac{1}{(x+1)\left(x^2-7 x+12\right)}=\frac{1}{(x+1)(x-3)(x-4)}\)
= \(\frac{A}{x+1}+\frac{B}{x-3}+\frac{C}{x-4}\) ………………..(1)
Multiplying both sides of eqn. (1) by (x + 1) (x – 3) (x – 4) ; we have
1 = A (x – 3) (x – 4) + B (x + 1) (x – 4) + C (x + 1) (x – 3) …………….(2)
putting x = – 1, 3, 4 successively in eqn. (2) ; we have
1 = A (- 4) (- 5)
⇒ A = \(\frac{1}{20}\)
1 = B (4) (- 1)
⇒ B = – \(\frac{1}{4}\)
and 1 = C (5) . 1
⇒ C = \(\frac{1}{5}\)
∴ from (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 18

(ii) \(\int_1^2 \frac{5 x^2}{x^2+4 x+3}\) dx
= \(\int_1^2\left[5-\frac{20 x+15}{x^2+4 x+3}\right]\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 19

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 16.
(i) \(\int_0^{\pi / 2} \frac{5 \sin x+3 \cos x}{\sin x+\cos x}\) dx
(ii) \(\int_0^{\pi / 2} \frac{3 \sin x+4 \cos x}{\sin x+\cos x}\) dx
Solution:
(i) Numerator = l (denominator) + m \(\frac{d}{d x}\) (deno.)
∴ 5 sin x + 3 cos x = l (sin x + cos x) + m \(\frac{d}{d x}\) (sin x + cos x)
⇒ 5 sin x + 3 cos x = l (sin x + cos x) + m (cos x – sin x)
Coeff. of sin x ;
5 = l – m;
Coeff. of cos x ;
3 = l + m
On solving these eqn’s; we have
l = 4, m = – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 20

(ii) Let I = \(\int_0^{\pi / 2} \frac{3 \sin x+4 \cos x}{\sin x+\cos x}\) dx
= \(\int_0^{\pi / 2}\left[3+\frac{\cos x}{\sin x+\cos x}\right]\) dx
= \(3 \int_0^{\pi / 2} d x+\int_0^{\pi / 2} \frac{\cos x d x}{\sin x+\cos x}\) dx
= 3 \(\frac{\pi}{2}\) + I1 ………………(*)
Let cos x = l (sin x + cos x) + m (cos x – sin x) ………..(1)
Coeff. of cos x ;
1 = l + m ………………(2)
Coeff. of sin x ;
0 = l – m ………………..(3)
On solving (2) and (3) ; we have
l = \(\frac{1}{2}\) = m
On dividing eqn. (1) throughout by sin x + cos x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 21

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 22

Question 16 (old).
(ii) \(\int_0^\pi \frac{\sin x}{\sin x+\cos x}\) dx
Solution:
Numerator = l (deno.) + m \(\frac{d}{d x}\) (deno.)
sin x = l (sin x + cos x) + m \(\frac{d}{d x}\) (sin x + cos x)
sin x = l (sin x + cos x) + m (cos x – sin x)
Coeff. of sin x;
1 = l – m;
Coeff. of cos x;
0 = l + m
On solving these eqn’s,
l = \(\frac{1}{2}\) ; m = – \(\frac{1}{2}\)
∴ \(\int_0^\pi \frac{\sin x d x}{\sin x+\cos x}=\int_0^\pi \frac{l(\sin x+\cos x)}{\sin x+\cos x} d x+m \int_0^\pi \frac{(\cos x-\sin x) d x}{\sin x+\cos x}\)
= l \(\int_0^\pi\) dx + m log |sin x + cos x|\(]_0^\pi\)
= \(\frac{1}{2}\) × π + (- \(\frac{1}{2}\)) [log 1 – log 1]
= \(\frac{\pi}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 17.
(i) \(\int_0^1\) x ex dx (NCERT)
(ii) \(\int_0^1\) (x esup>x + sin \(\frac{\pi}{4}\) x) dx (NCERT)
Solution:
(i) \(\int_0^1\) x ex dx
= \(\left.x e^x\right]_0^1-\int_0^1 e^x d x\)
= \(\left[x e^x-e^x\right]_0^1\)
= (1 . e1 – e1) – (0 – e0)
= 1

(ii) \(\int_0^1\) (x ex + sin \(\frac{\pi}{4}\) x) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 23

Question 18.
(i) \(\int_0^1\left(x e^{2 x}+\sin \frac{\pi x}{2}\right)\) dx
(ii) \(\int_0^{\pi / 2}\) x2 cos 2x dx
Solution:
(i) Let I = \(\int_0^1\left(x e^{2 x}+\sin \frac{\pi x}{2}\right)\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 24

(ii) \(\int_0^{\pi / 2}\) x2 cos 2x dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 25

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 19.
(i) \(\int_1^2 e^x\left(\frac{1}{x}-\frac{1}{x^2}\right)\) dx
(ii) \(\int_{\pi / 2}^\pi e^x\left(\frac{1-\sin x}{1-\cos x}\right)\) dx (NCERT)
Solution:
(i) Let I = \(\int_1^2 e^x\left(\frac{1}{x}-\frac{1}{x^2}\right)\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 26

(ii) Let I = \(\int_{\pi / 2}^\pi e^x\left(\frac{1-\sin x}{1-\cos x}\right)\) dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 27

Question 20.
(i) If \(\int_0^a\) 3x2 dx = 8, find the value of a.
(ii) If \(\int_1^a\) (3x2 + 2x + 1) dx = 11, find the value(s) of a.
Solution:
(i) Given \(\int_0^a\) 3x2 dx = 8
⇒ 3 \(\left[\frac{x^3}{3}\right]_0^a\) = 8
⇒ a3 – 0 = 8 = 23
⇒ a3 – 23 = 0
⇒ (a – 2) (a2 + 2a + 4) = 0
⇒ a = 2, \(\frac{-2 \pm \sqrt{4-16}}{2}\)
i.e., a = 2, \(\frac{-2 \pm \sqrt{4-16}}{2}\) ; i.e., a = 2, – 1 ± √3 i
Thus, only real value of a be 2.

(ii) \(\int_1^a\) (3x2 + 2x + 1) dx = 11
⇒ \(\left.\frac{3 x^3}{3}+\frac{2 x^2}{2}+x\right]_1^a\) = 11
⇒ (a3 + a2 + a) – (1 + 1 + 1) = 11
⇒ a3 + a2 + a – 14 = 0
⇒ (a – 2) (a2 + 3a + 7) = 0
either a – 2 = 0 or a2 + 3a + 17 = 0
it does not gives real values of a
⇒ a = 2
Hence a = 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16

Question 21.
(i) If \(\int_0^a\) √x dx = 4a \(\int_0^{\pi / 4}\) sin 2x dx, find the value of a.
(ii) If \(\int_a^b\) x3 dx = 0 and \(\int_a^b\) x2 dx = \(\frac{2}{3}\), find the values of a and b.
Solution:
(i) Given, \(\int_0^a\) √x dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 8 Integrals Ex 8.16 28

(ii) Given \(\int_a^b\) x3 dx = 0
⇒ \(\left.\frac{x^4}{4}\right]_a^b\) = 0
⇒ \(\frac{1}{4}\) (b4 – a4) = 0
⇒ b4 – a4 = 0
⇒ (b – a) (b + a) (b2 + a2) = 0 ………………(1)
and \(\int_a^b\) x2 dx = \(\frac{2}{3}\)
⇒ \(\left.\frac{x^3}{3}\right]_a^b=\frac{2}{3}\)
⇒ \(\frac{b^3-a^3}{3}=\frac{2}{3}\)
⇒ (b – a) (b2 + ab + a2) = 2 …………..(2)
When b – a = 0 ⇒ b = a, does not satisfies given integrals.
from (1) ; when b + a = 0 ⇒ b = – a
∴ from (2); we have
– 2a (a2 – a2 + a2) = + 2
⇒ a3 = – 1
⇒ a = – 1 [other two values of a are complex numbers]
and b = – a + 1
and other eqn’s does not gives real values of a and b.
Thus, a = – 1 and b = + 1.