OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter Test

Regular engagement with ISC Class 11 Maths Solutions S Chand Chapter 28 Statistics Chapter Test can boost students’ confidence in the subject.

S Chand Class 11 ICSE Maths Solutions Chapter 28 Statistics Chapter Test

Question 1.
The means of two sets of sizes 40 and 60 respectively are 15 and 16 and the standard deviations are 3 and 4. Obtain the mean and standard deviation of the composite set of 100 items when the two sets are pooled together.
Solution:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 1

Question 2.
Find the median of the following values :
7 cm, 9 cm, 10 cm, 12 cm, 15 cm, 18 cm, 20 cm.
Solution:
Given data is already in ascending order :
Here number of observations = n = 7 (odd)
∴ Median = size of \(\left(\frac{n+1}{2}\right)\) th item = size of \(\left(\frac{7+1}{2}\right)\)th item = size of 4th item = 12
Thus median value of 12 cm.

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter Test

Question 3.
The marks obtained by 12 students out of 50 are as under :
25, 24, 23, 32, 40, 27, 30, 25, 20, 15, 16, 45 Find the median marks.
Solution:
Arranging the given data in ascending order : 15, 16, 20, 23, 24, 25, 25, 27, 30, 32, 40, 45
Here no. of observations = n = 12 (even)
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 2

Question 4.
Compute Q3, D6 and P70 for the following data :
28, 17, 12, 25, 26, 19, 13, 27, 21, 16
Solution:
Arranging the given data in ascending order, we have
12, 13, 16, 17, 19, 21, 25, 26, 27, 28
Here no. of observations = n = 10 (even)
∴ Q3 = 3\(\left(\frac{n+1}{4}\right)\) th value = 3\(\left(\frac{10+1}{4}\right)\)th value = 8.25th value
= 8th value + 0.25 (9th value – 8th value) = 26 + 0.25 (27 – 26) = 26.25

D6 = 6\(\left(\frac{n+1}{10}\right)\)th value = 6\(\left(\frac{10+1}{100}\right)\)th value =6.6th value
= 6th value + 0.6 (7th value – 6th value) = 21 + 0.6 (25 – 21) = 21 + 0.6 × 4 = 21 + 2.4 = 23.4

P70 = 70\(\left(\frac{n+1}{100}\right)\)th value = 70\(\left(\frac{10+1}{100}\right)\)th value = 7.7th value = 7th value + 0.7 (8th value – 7th value) = 25 + 0.7(26 – 25) = 25.7

Question 5.
Obtain the median for the following data and describe the information conveyed by it.

Number of students absent 5 6 7 8 9 10 11 12 13 15 18 20
Number of days 1 5 11 14 16 13 10 70 4 1 1 1

Solution:
We construct the table of values is given as under :
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 3
∴ Median = \(\left(\frac{N+1}{2}\right)\)th item = \(\left(\frac{147+1}{2}\right)\)th item = 74th item = 12
Thus shows that for first half, the no. of days 12 or less than 12 students remained absent, while on the remaining half of the no. of days 12 or more than 12 students remained absent.

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter Test

Question 6.
Calculate the median for the following distribution:

x 1 2 6 9 11 8 5 4
f 5 7 9 11 13 15 17 19

Solution:
We construct the table of values is given as under:

x 1 2 4 5 6 8 9 11
f 5 7 19 17 9 15 11 13 Σf = N = 96
c.f 5 12 31 48 57 72 83 96

∴ Median = \(\left(\frac{\mathrm{N}+1}{2}\right)\)th value = \(\left(\frac{97}{2}\right)\)th value = 48.5 value
= \(\frac { 1 }{ 2 }\)(48th + 49th)obs = \(\frac { 1 }{ 2 }\)(5 + 6) = 5.5

Question 7.
Calculate the median, first quartile and third decile for the following data:

Weekly income (in ₹) 58 59 60 61 62 63 64 65 66
No. of workers 2 3 6 15 10 5 4 3 2

Solution:
We construct the table of values is given as under :

Weekly Income (in ₹) 58 59 60 61 62 63 64 65 66
No. of workers (f) 2 3 6 15 10 5 4 3 2
c.f 2 5 11 26 36 41 45 48 50

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 4

Question 8.
Draw an ogive for the following distribution :

Duration (in sec) 0-30 30-60 60-90 90-120 120-150 150-180 180-210
No. of cells 25 75 50 25 150 50 25

Hence, find Q1, Q3, D9, P4 and P40 from it.
Solution:
Less than type cumulative frequency distribution is given below:

Duration (in s) less than or equal to 30 60 90 120 150 180 210
No. of calls C.f 25 100 150 175 325 375 400

Taking 1 cm along x-axis = 30 sec.
1 cm along y-axis = 50 calls
Plot the points (30,25), (60,100), (90,150), (120,175), (150,325), (180,375), (210,400) and (0,0). Joining all these points by free hand curve gives the required less than type ogive.
More than type cummulative frequency distribution is given below :

Duration (in sec) more than or equal to 0 30 60 90 120 150 180
No. of calls (C.f) 400 375 300 250 225 75 25

Plot the points (0,400), (30,375), (60,300), (90,250), (120,225), (150,75), (180,25), (210,0) and join them by free hand curve give the required more than type ogive.
Thus both ogives intersects at P. From P, draw ⊥ PM on x-axis. The abscissa of point M gives the required median.
Thus, required median = 125.
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 5

Question 9.
Calculate the median, Q3, D7 and P70 for the following distribution :

Marks 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
No. of students 3 10 17 7 6 4 2 1

Solution:
The table of values is given as under :
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 6
Q3 : Here \(\frac { 3N }{ 4 }\) = \(\frac{3 \times 50}{4}\) = 37.5, which lies in class 40 – 50.
Here, l = 40 ; f = 6 and c =37 ; i = 10
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 7
Median : Here \(\frac { N }{ 2 }\) = \(\frac { 50 }{ 2 }\) = 25, which lies in class 20 – 30.
Here l = 20 ; f = 17 ; c = 13 ; i = 10
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 8

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter Test

Question 10.
Graphically find the mode of the following distribution :

Height (in cm) 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 4 3 8 11 6 2

Solution:
Draw rectangles corresponding to each class interval with heights corresponding to their frequencies. Now join the ends of the opposite rectangles in which rectangle corresponds to modal class be sandwitched between them. Then draw a ⊥ from the point of intersection P meeting x-axis at A.
Then abscissa of point A gives the required mode.
Here modal class be 60 – 70.
∴ required mode = 64
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Chapter test Img 9

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d)

Peer review of ISC Class 11 Maths Solutions S Chand Chapter 28 Statistics Ex 28(d) can encourage collaborative learning.

S Chand Class 11 ICSE Maths Solutions Chapter 28 Statistics Ex 28(d)

Question 1.
Find the mode of the given distribution by drawing a histogram.

Class Interval 0-10 10-20 20-30 30-40
Frequency 10 45 12 3

Solution:
Draw rectangles corresponding to each class interval with heights corresponds to their frequencies. Here the modal class be 10-20. Now join the ends of the opposite rectangles in which rectangle corresponding to modal class be sandwitched between them. Then draw a ⊥ from point of intersection P to x-axis. Thus x-coordinate of point A gives the required mode.
Clearly Mode = 15.15
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 1

Question 2.

Marks 1-5 6-10 11-15 16-20 21-25
f 7 10 16 32 24

Solution:
Here we convert first of all, discontinuous to continuous distribution.
Here adjustment factor = \(\frac{6-5}{2}\) = 0.5
we subtract 0.5 from each lower limit and add 0.5 to each upper limit of each class interval.

Marks 0.5-5.5 5.5-10.5 10.5-15.5 15.5-20.5 20.5-25.5
f 7 10 16 32 24

Draw rectangles corresponding to each class interval with heights corresponds to their frequencies. Here modal class be 16 – 20. Join the ends of the opposite rectangle in which rectangle corresponding to modal class be sandwitched between them. Then draw a ⊥ from point of intersection P meeting x-axis at A. Then abscissa of P gives the required mode.
∴ Required mode = 18.8
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 2

Question 3.

Marks 26-30 31-35 36-40 41-45
f 18 10 5 1

Solution:
We make first of all, discontinuous into continuous distribution by using adjustment factor.
Here adjustment factor = \(\frac{31-30}{2}\) = 0.5. So we subtract 0.5 from lower limit and add 0.5 to upper limit of each class interval.
Draw rectangles corresponding to each class interval with heights corresponds to their frequencies. Here modal class be 25.5 – 30.5.
Join RT and SU, draw a ⊥ from point of intersection P meeting x-axis at A.
Then x-coordinate of point A gives the required mode.
∴ Mode = 28.96
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 3

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d)

Question 4.

Mid-value 60 64 68 72 76
f 25 8 10 66 4

Solution:
The frequency distribution table is given as under:

Mid-value 60 64 68 72 76
Class Interval 58-62 62-66 66-70 70-74 74-78
Frequency 25 8 10 66 4

Draw rectangles corresponding to each class interval with heights corresponding to their frequencies. Now join the ends of the opposite rectangles in which rectangle corresponds to modal class be sandwitched between them. Then draw a ⊥ from the point of intersection P meeting x-axis at A. Then abscissa of point A gives the required mode. ∴ Mode = 71.90
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 4

Question 5.

Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Freq. 5 11 19 21 16 10 8 6 3 1

Solution:
Draw rectangles corresponding to each class interval with heights corresponding to their frequencies. Now join the ends of the opposite rectangles in which rectangle corresponds to modal class be sandwitched between them. Then draw a ⊥ from the point of intersection P meeting x-axis at A. Then abscissa of point A gives the required mode.
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 5
Thus required mode = 32.8

Question 6.
The daily profits in rupees of 100 shops are distributed as under :

Profits per shop (₹) 0-100 100-200 200-300 300-400 400-500 500-600
No. of shops 12 18 27 20 17 7

Draw a histogram of the data and find the modal value. Verify by direct calculation.
Solution:
Draw rectangles corresponding to each class interval with heights corresponding to their frequencies. Now join the ends of the opposite rectangles in which rectangle corresponds to modal class be sandwitched between them. Then draw a ⊥ from the point of intersection P meeting x-axis at A. Then abscissa of point A gives the required mode.
∴ Mode = 256.25
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 6
By Inspection, modal class be 200 – 300.
Here l = 200; fm = 27 ; fm-1 = 18 ; fm+1 = 20 ; i = 100
∴ Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = 200 + \(\frac{27-18}{54-18-20} \times 100\) =200 + 56.25 = 256.25

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d)

Question 7.
Determine the value of mode of the following distribution graphically and verify the result.

Marks 0-10 10-20 20-30 30-40 40-50 50-60
No. of students 5 12 14 10 8 6

Solution:
Draw rectangles corresponding to each class interval with heights corresponding to their frequencies. Now join the ends of the opposite rectangles in which rectangle corresponds to modal class be sandwitched between them. Then draw a ⊥ from the point of intersection P meeting x-axis at A. Then abscissa of point A gives the required mode.
Mode = 23.3
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(d) Img 7
By inspection, modal class be 20 – 30,
we have, l = 20 ; fm = 14 ; fm-1 = 12 ; fm+1 = 10 ; i = 10
∴ Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = \(20+\frac{14-12}{28-12-10} \times 10\) = 20 + 3.33 = 23.33

Question 8.
(i) In an asymmetrical distribution mean is 58 and median is 61 . Calculate mode.
(ii) If mode in a tolerably asymmetrical distribution is 12 and median is 16 , what would be the most probable mean?
(iii) Find the median if mean is 40 and mode is 36.
Solution:
(i) We know that mode = 3 median – 2 man
∴ Mode = 3 × 61 – 2 × 58 = 183 – 116 = 67

(ii) Given mode = 12 ; median = 16
since mode = 3 median – 2 mean
⇒ 12 = 3 × 16 – 2 mean
⇒ 2 mean = 48 – 12 = 36
⇒ mean = 18

(iii) Given mean = 40 ; mode = 36
We know that, Mode = 3 median – 2 mean
⇒ 36 = 3 median – 2 × 40
⇒ 3 median = 36 + 80 = 116
⇒ median = \(\frac{116}{3}\) = 38.67

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Access to comprehensive Understanding ISC Mathematics Class 12 Solutions encourages independent learning.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Very short answer type questions (1 to 13) :

Question 1.
(i) If \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}\), then find \(|\vec{a} \times \vec{b}|\). (NCERT)
(ii) Find the magnitude of \(\vec{a}\), where \(\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+3 \hat{k})\).
(iii) If \(\vec{a}=3 \hat{i}-5 \hat{j}\), \(\vec{b}=6 \hat{i}+3 \hat{j}\) are two vectors and \(\vec{c}\) is a vector such that \(\vec{c}=\vec{a} \times \vec{b}\), then find \(|\vec{a}|:|\vec{b}|:|\vec{c}|\).
Solution:
(i) ∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 3 \\
3 & 5 & -2
\end{array}\right|\)
= \(\hat{i}(-2-15)-\hat{j}(-4-9)+\hat{k}(10-3)\)
= \(-17 \hat{i}+13 \hat{j}+7 \hat{k}\)
Thus \(|\vec{a} \times \vec{b}|=\sqrt{(-17)^2+(13)^2+7^2}\)
= \(=\sqrt{289+169+49}=\sqrt{507}\)

(ii) \(\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+3 \hat{k})\)
∴ \(\vec{a}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & -2 \\
-1 & 0 & 3
\end{array}\right|\)
= \(\hat{i}(9-0)-\hat{j}(3-2)+\hat{k}(0+3)\)
= \(9 \hat{i}-\hat{j}+3 \hat{k}\)
∴ \(|\vec{a}|=\sqrt{9^2+(-1)^2+3^2}\)
= \(\sqrt{81+1+9}=\sqrt{91}\)

(iii) Given \(\vec{a}=3 \hat{i}-5 \hat{j}\) ;
\(\vec{b}=6 \hat{i}+3 \hat{j}\)
∴ \(\vec{c}=\vec{a} \times \vec{b}\)
= \(\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & -5 & 0 \\
6 & 3 & 0
\end{array}\right|\)
= \(\hat{i}(0-0)-\hat{j}(0-0)+\hat{k}(9+30)\)
= 39 \(\hat{k}\)
Thus \(|\vec{c}|=|39 \hat{k}|\)
= 39 × 1 = 39
\(|\vec{a}|=\sqrt{3^2+(-5)^2}\)
= \(\sqrt{9+25}=\sqrt{34}\)
\(|\vec{b}|=\sqrt{6^2+3^2}\)
= \(\sqrt{36+9}=\sqrt{45}\)
Thus, \(|\vec{a}|:|\vec{b}|:|\vec{c}|=\sqrt{34}: \sqrt{45}: 39\).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 1 (old).
(ii) If \(\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}\) and \(\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}\), then find \(|\vec{a} \times \vec{b}|\).
Solution:
Given \(\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}\)
and \(\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}\)
∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{array}\right|\)
= \(\hat{i}(0)-\hat{j}(2-21)+\hat{k}(-2+21)\)
= \(19 \hat{j}+19 \hat{k}\)
∴ \(|\vec{a} \times \vec{b}|=\sqrt{(19)^2+(19)^2}=19 \sqrt{2}\)

Question 2.
(i) Find the angle between two vectors \(\vec{a} \text { and } \vec{b}\) with magnitudes 1 and 2 respectively when \(|\vec{a} \times \vec{b}|=\sqrt{3}\).
(ii) If vectors \(\vec{a} \text { and } \vec{b}\) are such that \(|\vec{a}|=3,|\vec{b}|=\frac{2}{3}\) and \(\vec{a} \times \vec{b}\) is a unit vector then find the angle between \(\vec{a} \text { and } \vec{b}\).
(iii) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 7 and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\), find the angle between \(\vec{a} \text { and } \vec{b}\).
Solution:
(i) Given \(|\vec{a}|\) = 1 ;
\(|\vec{b}|\) = 2
also, \(\sqrt{3}=|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}|\) sin θ
[∵ \(|\hat{\eta}|\) = 1]
where θ be the angle between \(\vec{a} \text { and } \vec{b}\)
⇒ √3 = 1 × 2 × sin θ
⇒ sin θ = \(\frac{\sqrt{3}}{2}\)
⇒ θ = \(\frac{\pi}{3}\)

(ii) Given \(|\vec{a}|\) =3 ;
\(|\vec{b}|\) = \(\frac{2}{3}\)
and \(\vec{a} \times \vec{b}\) is a unit vector
or \(\vec{a} \times \vec{b}\) = 1
⇒ \(|\vec{a}||\vec{b}|\) sin θ = 1,
where θ be the angle between \(\vec{a} \text { and } \vec{b}\)
⇒ 3 × \(\frac{2}{3}\) sin θ = 1
sin θ = \(\frac{1}{2}\)
θ = \(\frac{\pi}{6}\)

(iii) Given \(|\vec{a}|\) = 2 ;
\(|\vec{b}|\) = 7
and \(\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}\)
= \(\sqrt{9+4+36}\)
= \(\sqrt{49}\) = 7
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\)
Then sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
∴ sin θ = \(\frac{7}{2 \times 7}=\frac{1}{2}\)
θ = 30°, 150°

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 3.
Find the angle between two vectors \(\vec{a} \text { and } \vec{b}\) if \(|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}\). (NCERT)
Solution:
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\)
Then \(|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}|\) sin θ
[∵ \(|\hat{\eta}|\) = 1]
and \(|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}|\) cos θ
Since \(|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|\) (given)
⇒ \(|\vec{a}||\vec{b}|\) sin θ = \(|\vec{a}||\vec{b}|\) cos θ
⇒ tan θ = 1
⇒ θ = \(\frac{\pi}{4}\)

Question 4.
(i) Find \(\vec{a} \cdot \vec{b}\) if \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 5 and \(|\vec{a} \times \vec{b}|\) = 8.
(ii) If \(|\vec{a}|\) = 4 ; \(|\vec{b}|\) = 2 and angle between \(|\vec{a}|\) and \(|\vec{b}|\) is \(\frac{\pi}{3}\), find \((\vec{a} \times \vec{b})^2\).
(iii) If vectors \(\vec{a} \text { and } \vec{b}\) are such that \(|\vec{a}|\) = \(\frac{1}{2}\), \(|\vec{b}|=\frac{4}{\sqrt{3}}\) and \(|\vec{a} \times \vec{b}|=\frac{1}{\sqrt{3}}\) then find \(|\vec{a} \cdot \vec{b}|\).
Solution:
(i) Given, \(|\vec{a}|\) = 2,
\(|\vec{b}|\) = 5
and \(|\vec{a} \times \vec{b}|\) = 8
By Lagranges identity, we have
\(|\vec{a} \times \vec{b}|^2=|\vec{a}||\vec{b}|^2-(\vec{a} \cdot \vec{b})^2\)
⇒ 64 = 4 × 25 – \((\vec{a} \cdot \vec{b})^2\)
⇒ \((\vec{a} \cdot \vec{b})^2\) = 36
⇒ \(\vec{a} \cdot \vec{b}\) = 6 (Taking +ve sign)

(ii) Given \(|\vec{a}|\) = 4 ;
\(|\vec{b}|\) = 2
since angle between \(|\vec{a}|\) and \(|\vec{b}|\) be \(\frac{\pi}{3}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 1

(iii) Given \(|\vec{a}|\) = \(\frac{1}{2}\) ;
\(|\vec{b}|=\frac{4}{\sqrt{3}}\)
and \(|\vec{a} \times \vec{b}|=\frac{1}{\sqrt{3}}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 2

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 4 (old).
(ii) If \(|\vec{a}|\) = 5, \(|\vec{b}|\) = 13 and \(|\vec{a} \times \vec{b}|\) = 25, then find \(\vec{a} \cdot \vec{b}\).
Solution:
Given \(|\vec{a}|\) = 5,
\(|\vec{b}|\) = 13
and \(|\vec{a} \times \vec{b}|\) = 25
If θ be the angle between \(\vec{a} \text { and } \vec{b}\)
sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
= \(\frac{25}{5 \times 13}=\frac{5}{13}\)
∴ cos θ = \(\sqrt{1-\frac{25}{169}}=\frac{12}{13}\)
∴ \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|\) cos θ
= 5 × 13 × \(\frac{12}{13}\) = 60.

Question 5.
(i) Find the value of λ if \((2 \hat{i}+6 \hat{j}+14 \hat{k}) \times(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}\).
(ii) Find the value of p if \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+3 \hat{j}+p \hat{k})=\overrightarrow{0}\).
(iii) Find λ and µ \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}\). (NCERT)
Solution:
(i) Let \(\vec{a}=2 \hat{i}+6 \hat{j}+14 \hat{k}\) ;
\(\vec{b}=(\hat{i}-\lambda \hat{j}+7 \hat{k})\)
∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 6 & 14 \\
1 & -\lambda & 7
\end{array}\right|\)
= \(\hat{i}(42+14 \lambda)-\hat{j}(14-14)+\hat{k}(-2 \lambda-6)\)
= \(\hat{i}(42+14 \lambda)+0 \hat{j}+(-2 \lambda-6) \hat{k}\)
It is given that \(\vec{a} \times \vec{b}=\overrightarrow{0}\)
⇒ \((42+14 \lambda) \hat{i}+0 \hat{j}+(-2 \lambda-6) \hat{k}\) = \(0 \hat{i}+0 \hat{j}+0 \hat{k}\)
∴ 42 + 14λ = 0
⇒ λ = – 3
and – 2λ – 6 = 0
λ = 3

(ii) Let \(\vec{a}=2 \hat{i}+6 \hat{j}+27 \hat{k}\) ;
\(\vec{b}=\hat{i}+3 \hat{j}+p \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 3

(iii) Let \(\vec{a}=2 \hat{i}+6 \hat{j}+27 \hat{k}\)
and \(\vec{b}=\hat{i}+\lambda \hat{j}+\mu \hat{k}\)
∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 6 & 27 \\
1 & \lambda & \mu
\end{array}\right|\)
= \(\hat{i}(6 \mu-27 \lambda)-\hat{j}(2 \mu-27)+\hat{k}(2 \lambda-6)\)
also \(\vec{a} \times \vec{b}=\overrightarrow{0}\)
∴ \((6 \mu-27 \lambda) \hat{i}-\hat{j}(2 \mu-27)+\hat{k}(2 \lambda-6)=\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}\) ……………….(1)
Thus 6µ – 27λ = 0 ………………………(1)
– (2µ – 27) = 0
⇒ µ = \(\frac{27}{2}\)
and 2λ – 6 = 0
⇒ λ = 3
Also, λ = 3, µ = \(\frac{27}{2}\) satisfies eqn. (1).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 6.
(i) Find a unit vector perpendicular to the two vectors \(\hat{i}+2 \hat{j}-\hat{k}\) and \(2 \hat{i}+3 \hat{j}+\hat{k}\). (ISC 2004)
(ii) Find a unit vector perpendicular to \(\vec{a} \text { and } \vec{b}\), where \(\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}\) and \(\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}\).
Solution:
(i) Let \(\vec{a}=\hat{i}+2 \hat{j}-\hat{k}\) ;
\(\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 4

(ii) Given \(\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}\)
and \(\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}\)
∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{array}\right|\)
= \(\hat{i}(-14+14)-\hat{j}(2-21)+\hat{k}(-2+21)\)
= \(0 \hat{i}+19 \hat{j}+19 \hat{k}\)
Thus unit vector = \(\pm \frac{\vec{a} \times \vec{b}}{|\vec{a}+\vec{b}|}\)
= \(\pm \frac{19(\hat{j}+\hat{k})}{\sqrt{361+361}}\)
= \(\pm \frac{(\hat{j}+\hat{k})}{\sqrt{2}}\)

(ii) Find a unit vector perpendicular to the plane of \(\vec{a} \text { and } \vec{b}\), where \(\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}\) and \(\vec{b}=\hat{i}-3 \hat{j}+\hat{k}\).
Solution:
Given latex]\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}[/latex]
and \(\vec{b}=\hat{i}-3 \hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 5

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 7.
(i) What conclusion can you draw about vectors \(\vec{a} \text { and } \vec{b}\) when \(\vec{a} \times \vec{b}=\overrightarrow{0}\) and \(\vec{a} \cdot \vec{b}\) = 0? (NCERT)
(ii) If either \(\vec{a}\) = 0 or \(\vec{b}\) = 0, then \(\vec{a} \times \vec{b}=\overrightarrow{0}\). Is the converse true? Justify your answer with an example. (NCERT)
Solution:
(i) When \(\vec{a} \times \vec{b}=\overrightarrow{0}\)
⇒ \(\vec{a}\) = 0
or \(\vec{a} \| \vec{b}\)
or \(\vec{a} \cdot \vec{b}\) = 0
⇒ \(\vec{a}=\overrightarrow{0}\)
or \(\vec{b}=\overrightarrow{0}\)
or \(\vec{a} \perp \vec{b}\)
Now a vector can never be parallel and perpendicular simultaneously.
Thus \(\vec{a}=\overrightarrow{0}\) or \(\vec{b}=\overrightarrow{0}\) = 0.

(ii) Given \(\vec{a}=\overrightarrow{0}\)
or \(\vec{b}=\overrightarrow{0}\)
∴ \(\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}\) = 0
Let \(\vec{a}=\hat{i}\) ;
b = 2 \(\hat{i}\)
Here \(\)
but neither \(\vec{a}=\overrightarrow{0}\) nor \(\vec{b}=\overrightarrow{0}\).

Question 7 (old).
(i) show that \(\vec{a} \times \vec{b}=\vec{a} \times \vec{c}\) may not imply that \(\vec{b}=\vec{c}\).
(ii) If \(\vec{b}=\vec{c}\), is \(\vec{a} \times \vec{b}=\vec{c} \times \vec{a}\) ?
Solution:
(i)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 6

(ii) Not necessary ;

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 7

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 8.
Find λ such that \(\vec{a}=\hat{i}+\lambda \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+9 \hat{k}\) are parallel.
Solution:
Given \(\vec{a}=\hat{i}+\lambda \hat{j}+3 \hat{k}\)
and \(\vec{b}=3 \hat{i}+2 \hat{j}+9 \hat{k}\)
Since \(\vec{a} \text { and } \vec{b}\) are parallel.
∴ \(\vec{a} \times \vec{b}=\overrightarrow{0}\) …………….(1)
Here, \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & \lambda & 3 \\
3 & 2 & 9
\end{array}\right|\)
= \(\hat{i}(9 \lambda-6)-\hat{j}(9-9)+\hat{k}(2-3 \lambda)\)
= \((9 \lambda-6) \hat{i}+(2-3 \lambda) \hat{k}\)
∴ from (1) ; we have
\((9 \lambda-6) \hat{i}+(2-3 \lambda) \hat{k}\)
= \(\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}\)
∴ 9λ – 6 = 0
⇒ λ = \(\frac{2}{3}\)
and 2 – 3λ = 0
⇒ λ = \(\frac{2}{3}\)

Question 9.
(i) \((\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}\)
(ii) \((\hat{j} \times \hat{k}) \cdot \hat{i}+(\hat{i} \times \hat{k}) \cdot \hat{j}+(\hat{i} \times \hat{j}) \cdot \hat{k}\)
Solution:
Since \(\hat{i}, \hat{j}, \hat{k}\) forms right handed orthogonal system
∴ \(\hat{i} \times \hat{j}=\hat{k}\)
\(\hat{j} \times \hat{k}=\hat{i}\)
\(\hat{k} \times \hat{i}=\hat{j}\)
and \(\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}\) = 0

(i) \((\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}\)
\(\hat{k} \cdot \hat{k}+\hat{i} \cdot \hat{j}\)
= 1 + 0 = 1
[∵ \(\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}\) = 1
and \(\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}\) = 0]

(ii) \((\hat{j} \times \hat{k}) \cdot \hat{i}+(\hat{i} \times \hat{k}) \cdot \hat{j}+(\hat{i} \times \hat{j}) \cdot \hat{k}\)
\(\hat{i} \cdot \hat{i}+(-\hat{j}) \cdot \hat{j}+(\hat{k} \cdot \hat{k})\)
= 1 – 1 + 1 = 0

Question 10.
Find the area of the parallelogram whose adjacent sides are represented by the vectors
(i) \(3 \hat{i}+\hat{j}+4 \hat{k} \text { and } \hat{i}-\hat{j}+\hat{k}\) (NCERT)
(ii) \(2 \hat{i}-3 \hat{k} \text { and } 4 \hat{j}+2 \hat{k}\)
Solution:
(i) Let \(\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}\)
and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 8

(ii) Let \(\vec{a}=2 \hat{i}-3 \hat{k}\)
and \(\vec{b}=4 \hat{j}+2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 9

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 11.
Find the area of a triangle whose two sides are represented by the vectors \(3 \hat{i}+\hat{j}+4 \hat{k}\) and \(\hat{i}-\hat{j}+\hat{k}\).
Solution:
Let \(\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}\)
and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\)
∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & 4 \\
1 & -1 & 1
\end{array}\right|\)
= \(\hat{i}(1+4)-\hat{j}(3-4)+\hat{k}(-3-1)\)

∴ \(\vec{a} \times \vec{b}=5 \hat{i}+\hat{j}-4 \hat{k}\)
Thus, \(|\vec{a} \times \vec{b}|=\sqrt{5^2+1^2+(-4)^2}\)
= \(\sqrt{25+1+16}=\sqrt{42}\)

Therefore, area of triangle = \(\frac{1}{2}|\vec{a} \times \vec{b}|\)
= \(\frac{1}{2} \sqrt{42}\) sq. units

Question 12.
(i) If \(\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{k}\), then find \(|\vec{b} \times 2 \vec{a}|\).
(ii) If \(\vec{a}=\hat{i}+\hat{j}-3 \hat{k}\) and \(\vec{b}=\hat{j}+2 \hat{k}\), then find \(|2 \vec{b} \times \vec{a}|\).
Solution:
(i) Given, \(\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}\)
and \(\vec{b}=3 \hat{i}+2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 10

(ii) Given, \(\vec{a}=\hat{i}+\hat{j}-3 \hat{k}\) ;
\(\vec{b}=\hat{j}+2 \hat{k}\)

∴ \(2 \vec{b}=2 \hat{j}+4 \hat{k}\)
\(2 \vec{b} \times \vec{a}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 2 & 4 \\
1 & 1 & -3
\end{array}\right|\)
= \(\hat{i}(-6-4)-\hat{j}(-4)+\hat{k}(-2)\)
= \(-10 \hat{i}+4 \hat{j}-2 \hat{k}\)

∴ \(|2 \vec{b} \times \vec{a}|=\sqrt{(-10)^2+(4)^2+(-2)^2}\)
= \(\sqrt{100+16+4}\)
= \(\sqrt{120}=2 \sqrt{30}\)

Question 13.
(i) If \(\vec{a}=3 \hat{i}-\hat{j}-2 \hat{k}\) and \(\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}\), then find \((\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})\).
(ii) Taking \(\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}\) and \(\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}\) verify that \(\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}\).
Solution:
(i) Given \(\vec{a}=3 \hat{i}-\hat{j}-2 \hat{k}\) ;
\(\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}\)
\(\vec{a}+2 \vec{b}=(3 \hat{i}-\hat{j}-2 \hat{k})+2(2 \hat{i}+3 \hat{j}+\hat{k})\)
= \(7 \hat{i}+5 \hat{j}+0 \hat{k}\)

\(2 \vec{a}-\vec{b}=2(3 \hat{i}-\hat{j}-2 \hat{k})-(2 \hat{i}+3 \hat{j}+\hat{k})\)
\(4 \hat{i}-5 \hat{j}-5 \hat{k}\)

Thus \((\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})\)
= \(\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
7 & 5 & 0 \\
4 & -5 & -5
\end{array}\right|\)
= \(\hat{i}(-25-0)-\hat{j}(-35-0)+\hat{k}(-35-20)\)
= \(-25 \hat{i}+35 \hat{j}-55 \hat{k}\)

(ii) Given \(\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}\)
and \(\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}\)

∴ \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -3 & -1 \\
1 & 4 & -2
\end{array}\right|\)
= \(\hat{i}(6+4)-\hat{j}(-4+1)+\hat{k}(8+3)\)
= \(10 \hat{i}+3 \hat{j}+11 \hat{k}\)

∴ \(\vec{b} \times \vec{a}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 4 & -2 \\
2 & -3 & -1
\end{array}\right|\)
= \(\hat{i}(-4-6)-\hat{j}(-1+4)+\hat{k}(-3-8)\)
= \(-10 \hat{i}-3 \hat{j}-11 \hat{k}\)

∴ \(\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 14.
If θ is the angle between two vectors \(\hat{i}-2 \hat{j}+3 \hat{k}\) and \(3 \hat{i}-2 \hat{j}+\hat{k}\), find sin θ.
Solution:
Let \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\)
and \(\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 12

Question 15.
If \(\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}\), then find :
(i) the sine of the angle between \(\vec{a} \text { and } \vec{b}\). (NCERT Exemplar)
(ii) a unit vector perpendicular to both the vectors \(\vec{a} \text { and } \vec{b}\).
Solution:
(i) Given \(\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}\)
and \(\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}\)
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 13

(ii) Here,
\(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & 2 \\
2 & -2 & 4
\end{array}\right|\)
= \(8 i-8 j-8 k\)
\(|\vec{a} \times \vec{b}|=\sqrt{8^2+(-8)^2+(-8)^2}\)
= 8√3
Thus required unit vector ⊥to both \(\vec{a} \text { and } \vec{b}\)
= \(\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \pm \frac{8(\hat{i}-\hat{j}-\hat{k})}{8 \sqrt{3}}\)
= ± \(\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 15 (old).
(i) If \(\vec{a}=2 \hat{i}-\hat{j}+\hat{k}\), \(\vec{b}=\hat{i}+2 \hat{j}-\hat{k}\) and \(\vec{c}=2 \hat{i}+3 \hat{j}\), find \((\vec{a} \times \vec{b}) \times \vec{c}\) and \(\vec{a} \times(\vec{b} \times \vec{c})\), and verify that these are not the same.
(ii) If \(\vec{a}, \vec{b} \text { and } \vec{c}\) represent the position vectors of the points with coordinates (2, – 10, 2), (3, 1, 2) and (2, 1, 3) respectively, find the value of \(\vec{a} \times(\vec{b} \times \vec{c})\). (ISC 2009)
Solution:
(i) Given \(\vec{a}=2 \hat{i}-\hat{j}+\hat{k}\),
\(\vec{b}=\hat{i}+2 \hat{j}-\hat{k}\)
and \(\vec{c}=2 \hat{i}+3 \hat{j}\)

\(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 1 \\
1 & 2 & -1
\end{array}\right|\)
= \(\hat{i}(1-2)-\hat{j}(-2-1)+\hat{k}(4+1)\)
= \(-\hat{i}+3 \hat{j}+5 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 11

(ii) Given \(\vec{a}=2 \hat{i}-10 \hat{j}+2 \hat{k}\),
\(\vec{b}=3 \hat{i}+\hat{j}+2 \hat{k}\)
and \(\vec{c}=2 \hat{i}+\hat{j}+3 \hat{k}\)

∴ \(\vec{b} \times \vec{c}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right|\)
= \(\hat{i}(3-2)-\hat{j}(9-4)+\hat{k}(3-2)\)
= \(\hat{i}-5 \hat{j}+\hat{k}\)

∴ \(\vec{a} \times(\vec{b} \times \vec{c})=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & -10 & 2 \\
1 & -5 & 1
\end{array}\right|\)
= \(\hat{i}(-10+10)-\hat{j}(2-2)+\hat{k}(-10+10)\)
= \(0 \hat{i}+0 \hat{j}+0 \hat{k}\)
= \(\overrightarrow{0}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 16.
(i) Find a vector of magnitude 6 units which is perpendicular to both the vectors \(2 \hat{i}-\hat{j}+2 \hat{k}\) and \(4 \hat{i}-\hat{j}+3 \hat{k}\) (NCERT Exemplar)
(ii) Find a vector of magnitude 19 which is perpendicular to both the vectors \(-\hat{j}+\hat{k}\) and \(4 \hat{i}-\hat{j}+8 \hat{k}\).
Solution:
(i) Let \(\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}\)
and \(\vec{b}=4 \hat{i}-\hat{j}+3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 15

(ii) Let \(\vec{a}=4 \hat{i}-\hat{j}+8 \hat{k}\)
and \(\vec{b}=-\hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 16

Question 17.
Find a vector of magnitude 6, perpendicular to each of the vectors \((\vec{a}+\vec{b})\) and \((\vec{a}-\vec{b})\) where \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\).
Solution:
Given, \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\)
and \(\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 17

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 18.
If \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\) and \(\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}\), find \(\vec{a} \times \vec{b}\). Verify that \(\vec{a}\) and \(\vec{a} \times \vec{b}\) are perpendicular to each other.
Solution:
Given \(\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}\)
and \(\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}\)
\(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 3 \\
2 & 3 & -5
\end{array}\right|\)
= \(\hat{i}(10-9)-\hat{j}(-5-6)+\hat{k}(3+4)\)
= \(\hat{i}+11 \hat{j}+7 \hat{k}\)

Now \(\vec{a} \cdot(\vec{a} \times \vec{b})\)
= \((\hat{i}-2 \hat{j}+3 \hat{k}) \cdot(\hat{i}+11 \hat{j}+7 \hat{k})\)
= 1 (1) – 2 (11) + 3 (7) = 0
∴ \(\vec{a} \perp \vec{a} \times \vec{b}\)

Question 18 (old).
Find a unit vector perpendicular to the vectors \(4 \hat{i}+3 \hat{j}+\hat{k}\) and \(2 \hat{i}-\hat{j}+2 \hat{k}\). Determine the sine of the angle between these two vectors. (ISC 2007)
Solution:
Given \(\vec{a}=4 \hat{i}+3 \hat{j}+\hat{k}\)
and \(\vec{b}=2 \hat{i}-\hat{j}+2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 14

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 19.
(i) If \(\vec{a}=\hat{i}-\hat{j}\), \(\vec{b}=3 \hat{j}-\hat{k}\) and \(\vec{c}=7 \hat{i}-\hat{k}\), find a vector \(\vec{d}\) which is perpendicular to both \(\vec{a} \text { and } \vec{b}\) and \(\vec{c} \cdot \vec{d}\) = 1.
(ii) If \(\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}\), \(\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}\), and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\), find a vector \(\vec{d}\) which is perpendicular to both the vectors \(\vec{a} \text { and } \vec{b}\) and \(\vec{c} \cdot \vec{d}\) = 27.
(iii) If \(\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}\), \(\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}\) and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\). Find a vector \(\vec{d\) which is perpendicular to both \(\vec{a} \text { and } \vec{b}\) and \(\vec{c} \cdot \vec{d}\) = 18.
(iv) If \(\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}\), \(\vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}\) and \(\vec{c}=3 \hat{i}+\hat{j}-\hat{k}\). Find a vector \(\vec{d\) which is perpendicular to both \(\vec{c} \text { and } \vec{b}\) and \(\vec{d} \cdot \vec{a}\) = 21.
Solution:
(i) Given \(\vec{a}=\hat{i}-\hat{j}\),
\(\vec{b}=3 \hat{j}-\hat{k}\)
and \(\vec{c}=7 \hat{i}-\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 18

(ii) Given \(\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}\),
\(\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}\),
and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\)
Let the required vector be \(\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}\)
such that \(\vec{d}\) is perpendicular to \(\vec{a} \text { and } \vec{b}\)
∴ \(\vec{d} \cdot \vec{b}\) = 0
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+4 \hat{j}+2 \hat{k})\) = 0
⇒ x + 4y + 7z = 0 …………………(1)
Also \(\vec{d} \cdot \vec{b}\) = 0
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(3 \hat{i}-2 \hat{j}+7 \hat{k})\) = 0
⇒ 3x – 2y + 7z = 0 ………………..(2)
also given \(\vec{c} \cdot \vec{d}\) = 27
⇒ \((2 \hat{i}-\hat{j}+4 \hat{k}) \cdot(x \hat{i}+y \hat{j}+z \hat{k})\)
⇒ 2x – y + 4z = 0 ………………..(3)
Multiplying eqn. (2) by 2 and adding to eqn. (1) ; we get
7x + 16z = 0 …………………..(4)
Multiplying eqn. (3) by 2 ; we have
4x – 2y + 8z = 54 …………………….(5)
eqn. (5) – eqn. (2) gives ;
x + z = 54 ……………….(6)
Multiplying eqn. (6) by (7) – eqn. (4) ; gives
⇒ 7z – 16z = + 54 × 7
⇒ – 9z = + 54 × 7
⇒ z = – 42
∴ from eqn. (6) ;
x = 96
∴ from eqn. (3) ;
y = 192 – 168 – 27 = – 3
Thus required vector be \(\vec{d}=96 \hat{i}-3 \hat{j}-42 \hat{k}\)
i.e., \(\vec{d}=3(32 \hat{i}-\hat{j}-14 \hat{k})\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

(iii) Given \(\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}\),
\(\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}\)
and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\)
Let the required vector be
\(\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}\) …………………..(1)

Since \(\vec{d}\) is perpendicular to \(\vec{a} \text { and } \vec{b}\)
∴ \(\vec{d} \cdot \vec{b}\) = 0
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+4 \hat{j}+2 \hat{k})\) = 0
⇒ x + 4y + 2z = 0 ………………….(2)

Also \(\vec{d} \cdot \vec{b}\) = 0
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(3 \hat{i}-2 \hat{j}+7 \hat{k})\) = 0
⇒ 3x – 2y + 7z = 0 ……………………..(3)

given \(\vec{c} \cdot \vec{d}\) = 18
⇒ \((2 \hat{i}-\hat{j}+4 \hat{k}) \cdot(x \hat{i}+y \hat{j}+z \hat{k})\) = 18
⇒ 2x – y + 4z = 18 ……………………..(4)
Multiplying eqn. (3) by (2) and adding to eqn. (2) ; we have
7x + 16z = 0 ……………………(5)
Multiplying eqn. (4) by (2) – eqn. (3) ; we have
x + z = 36 ……………………..(6)
Multiply eqn. (6) by 7 – eqn. (5) ; we have
– 9z = 36 × 7
⇒ z = – 28
∴ from (6) ;
x = 64
∴ from (4) ;
y = 128 – 112 – 18 = – 2
∴ from (1) ;
\(\vec{d}=64 \hat{i}-2 \hat{j}-28 \hat{k}\)
= \(2(32 \hat{i}-\hat{j}-14 \hat{k})\)

(iv) Given \(\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}\),
\(\vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}\)
and \(\vec{c}=3 \hat{i}+\hat{j}-\hat{k}\)
Let \(\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}\)
Since \(\vec{d}\) is perpendicular to \(\vec{c}\)
⇒ \(\vec{d} \text { and } \vec{c}\) = 0
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(3 \hat{i}+\hat{j}-\hat{k})\) = 0
⇒ 3x + y – z = 0 ………………..(1)
Also \(\vec{d}\) is perpendicular to \(\vec{b\)
⇒ \(\vec{d} \text { and } \vec{b}\) = 0
i.e. \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}-4 \hat{j}+5 \hat{k})\) = 0
⇒ x – 4y + 5z = 0 …………………..(2)
Also, \(\) = 21
⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(4 \hat{i}+5 \hat{j}-\hat{k})\) = 21
⇒ 4x + 5y – z = 21 ……………………(3)
Multiply eqn. (1) by 5 and adding to eqn. (2) ; we get
16x + y = 0 ………………….(4)
Multiply eqn. (3) by 5 and adding to eqn. (2) ; we get
21x + 21y = 105
⇒ x + y = 5 ……………………(5)
On solving eqn. (4) and (5) ; we have
x = – \(\frac{1}{3}\)
and y = \(\frac{16}{3}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 19

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 20.
Define \(\vec{a} \times \vec{b}\) and prove that \(|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b})\) tan θ, where θ is the angle between \(\vec{a} \text { and } \vec{b}\).
Solution:
The vector product \(\) is a vector quantity whose magnitude is \(|\vec{a}||\vec{b}|\) sin θ where θ is the angle between \(\vec{a} \text { and } \vec{b}\) and whose direction is perpendicular to plane of \(\vec{a} \text { and } \vec{b}\) in such a way that \(\vec{a}, \vec{b}\) and this direction forms a right handed system.
∴ \(\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}\)
where \(\hat{n\) be the unit vector ⊥ to the plane of \(\vec{a} \text { and } \vec{b}\) s.t. \(\vec{a}, \vec{b}, \hat{n}\) forms a right handed system.
Since \(|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}|\) ……………………..(1)
We know that \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)
∴ \(|\vec{a}||\vec{b}|=\frac{\vec{a} \cdot \vec{b}}{\cos \theta}\)
∴ from (1) ;
\(|\vec{a} \times \vec{b}|=\frac{\vec{a} \cdot \vec{b}}{\cos \theta}\) sin θ
∴ \(|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b})\) tan θ

Question 21.
In ∆ OAB, \(\overrightarrow{\mathrm{OA}}=3 \hat{i}+2 \hat{j}-\hat{k}\) and \(\overrightarrow{\mathrm{OB}}=\hat{i}+3 \hat{j}+\hat{k}\). Find the area of the triangle OAB.
Solution:
Given \(\overrightarrow{\mathrm{OA}}=3 \hat{i}+2 \hat{j}-\hat{k}\)
and \(\overrightarrow{\mathrm{OB}}=\hat{i}+3 \hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 20

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 22.
Using vectors, find the area of the triangle whose vertices are : A (3, – 1, 2), B (1, – 1, – 3), C (4, – 3, 1). (ISC 2020)
Solution:

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 21

Question 23.
(i) Find the area of a parallelogram whose diagonals are determined by the vectors \(\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}\) and \(\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}\). (ISC 2009)
(ii) The vectors \(-2 \hat{i}+4 \hat{j}+4 \hat{k}\) and \(-4 \hat{i}-2 \hat{k}\) represent the diagonals BD and AC of a parallelogram ABCD. Find the area of the parallelogram. (ISC 2006)
Solution:
(i) Given \(\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}\)
and \(\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}\)
Now \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -2 \\
1 & -3 & 4
\end{array}\right|\)
= \(\hat{i}(4-6)-\hat{j}(12+2)+\hat{k}(-9-1)\)
= \(-2 \hat{i}-14 \hat{j}-10 \hat{k}\)
∴ Required area of ||gm = \(\frac{1}{2}|\vec{a} \times \vec{b}|\)
= \(\frac{1}{2} \sqrt{4+196+100}=5 \sqrt{3}\)

(ii) Given \(\vec{a}=-2 \hat{i}+4 \hat{j}+4 \hat{k}\)
and \(\vec{b}=-4 \hat{i}-2 \hat{k}\)
Now, \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 4 & 4 \\
-4 & 0 & -2
\end{array}\right|\)
= \(\hat{i}(-8)-\hat{j}(4+16)+\hat{k}(16)\)
= \(-8 \hat{i}-20 \hat{j}+16 \hat{k}\)
= \(4(-2 \hat{i}-5 \hat{j}+4 \hat{k})\)
∴ Required area of ||gm = \(\frac{1}{2}|\vec{a} \times \vec{b}|\)
= \(\frac{\sqrt{64+400+256}}{2}\)
= \(\frac{\sqrt{720}}{2}\)
= \(\frac{12 \sqrt{5}}{2}\)
= 6√5

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 24.
The two adjacent sides of a parallelogram are represented by the vectors \(2 \hat{i}-4 \hat{j}-5 \hat{k}\) and \(2 \hat{i}+2 \hat{j}+3 \hat{k}\).
Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
Solution:
Given, \(\vec{a}=2 \hat{i}-4 \hat{j}-5 \hat{k}\)
and \(\vec{b}=2 \hat{i}+2 \hat{j}+3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3 22

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.3

Question 25.
Find the area of the triangle formed by the points A (1, 2, 3), B(2, -1 , 4) and C (4, 5, – 1).
Solution:
Given P.V. of A = \(\hat{i}+2 \hat{j}+3 \hat{k}\) ;
P.V. of B = \(2 \hat{i}-\hat{j}+4 \hat{k}\)
and P.V. of C = \(4 \hat{i}+5 \hat{j}-\hat{k}\)
∴ \(\overrightarrow{\mathrm{AB}}\) = P.V. of B – P.V. of A
= \((2 \hat{i}-\hat{j}+4 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\)
= \(\hat{i}-3 \hat{j}+\hat{k}\)

\(\overrightarrow{\mathrm{AB}}\) = P.V. of B – P.V. of A
= \((4 \hat{i}+5 \hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\)
= \(3 \hat{i}+3 \hat{j}-4 \hat{k}\)

∴ \(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 1 \\
3 & 3 & -4
\end{array}\right|\)
= \(\hat{i}(12-3)-\hat{j}(-4-3)+\hat{k}(3+9)\)
= \(9 \hat{i}+7 \hat{j}+12 \hat{k}\)

∴ \(|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{9^2+7^2+12^2}=\sqrt{274}\)
Thus required area of ∆ABC = \(\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|\)
= \(\frac{\sqrt{274}}{2}\)

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c)

Continuous practice using ISC Class 11 Maths Solutions S Chand Chapter 28 Statistics Ex 28(c) can lead to a stronger grasp of mathematical concepts.

S Chand Class 11 ICSE Maths Solutions Chapter 28 Statistics Ex 28(c)

Question 1.
Find the mode of the following data :
(i) 3, 4, 7, 11, 4, 3, 4, 5, 6, 4, 1, 2, 4, 4
(ii) Size of shoes : 4, 4.5, 5, 4.5, 5.5, 5, 6, 4.5, 4, 4.5
(iii) Wages (₹) : 100, 120, 100, 120, 130, 120, 120, 130, 120, 100
(iv) Runs in an innings : 18, 32, 0, 40, 60, 69, 33, 69, 35, 11, 20
Solution:
(i) Arranging the given data in ascending order; we have
1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 11
Here 4 repeated maximum no. of times.
∴ required mode = 4

(ii) Arranging the given data in ascending order : 4, 4, 4.5, 4.5, 4.5, 4.5, 5, 5, 5.5, 6
Here 4.5 repeated maximum no. of times.
∴ required mode = 4.5

(iii) Arranging the given data in ascending order :
100, 100, 100, 120, 120, 120, 120, 120, 130, 130
Here 120 repeated maximum no. of times i.e. 5 times. Thus required mode = 120

(iv) Arranging the given data in ascending order: 0, 11, 18, 20, 32, 33, 35, 40, 60, 69, 69
Here 69 repeated maximum no. of times
∴ required mode = 69

Question 2.
Find the mode from the following data in question 2 to 7.

Marks 10 12 15 22 25 35 45 50 60
Number of students 4 6 10 14 20 19 10 6 3

Solution:
Here maximum frequency be 20 and corresponding observation be 25. Thus required modal marks be 25.

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c)

Question 3.

Size 8 10 12 14 16 18 20 22 24
Frequency 3 5 1 7 8 6 4 2 3

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 16
∴ Mean = \(\frac{\Sigma f x}{\Sigma f}\) = \(\frac{652}{41}\)
Here, \(\frac{N+1}{2}\) = \(\frac{41+1}{2}\) = 21
Thus Md = 16
∴ Mode = 3 median – 2 mean = 3 × 16 – 2 × \(\frac{652}{41}\) ≃ 16.19

Question 4.

Class interval 0-10 10-20 20-30 30-40
Frequency 10 45 12 3

Solution:
From given data, maximum frequency be 45 and thus 10 – 20 be the modal class.
Here l = 10; fm = 45 ; fm-1 = 10; fm+1 = 12 ; i = 10
Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = 10 + \(\frac{45-10}{90-10-12} \times 10\) = 10 + \(\frac{350}{68}\) = 10 + 5.1470 = 15.147

Question 5.

Marks 0-10 10-20 20-30 30-40 40-50
Number of students 8 16 26 60 38

Solution:
Here maximum frequency be 60 and modal class be 30 – 40.
Here, l = 30; fm = 60; fm-1 = 28 ; fm+1 = 38 ; i = 10
∴ Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = 30 + \(\frac{60-28}{120-28-38} \times 10\) =30 + \(\frac{320}{56}\) = 35.71

Question 6.

Marks Frequency Marks Frequency
1-5 7 26-30 18
6-10 10 31-35 10
11-15 16 36-40 5
16-20 32 41-45 1
21-25 24

Solution:
Given class-intervals are discontinuous we make it continuous with the help of adjustment factor.
Here adjustment factor = \(\frac{6-5}{2}\) = 0.5
We subtract 0.5 from each lower limit and add 0.5 to each upper limit.
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c) Img 2
Here modal class be 15.5 – 20.5
∴ l = 15.5; fm = 32 ; fm-1 = 16; fm+1 = 24; i = 5
Thus,
Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\)
= 15.5 + \(\frac{32-16}{64-16-24} \times 5\)
= 15.5 + \(\frac{80}{24}\) ≃ 18.84

Question 7.

Mid-value 60 64 68 72 76
Frequency 25 8 10 6 4

Solution:
The table of values is given as under:

Mid-value Class Intervals Frequency(f)
60 58-62 25
64 62-66 8
68 66-70 10
72 70-74 6
76 74-78 4
Σf = N = 53

Here Modal class be 58 – 62.
Here
l = 58; fm = 25 ; fm+1 = 8 ; i = 4 ; fm-1 = 0
Thus Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = 58 + \(\frac{25-0}{50-8}\) × 4 = 60.38

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c)

Question 8.
(i) The mode of the following frequency distribution is 48.6 Find the unknown frequency.

Class 20-25 25-40 40-55 55-70 70-85
Frequency 6 20 44 ? 3

(ii) If the frequency of the class 70-85 is 13 instead of 3, then what difference will it make?
Solution:
Let the missing frequency be f.
Here modal class be 40 – 55.
∴ l = 40; fm = 44 ; fm-1 = 20 ; fm+1 = f; i = 15
Thus,
Mode = \( l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m-1}} \times i\)
48.6 = 40 + \(\frac{44-20}{88-20-f} \times 15\)
⇒ 8.6 = \(\frac{360}{68-f}\)
⇒ 584.8 – 8.6f = 360
⇒ 8.6(68 – f) = 360
⇒ 584.8 – 8.6f = 360
⇒ 8.6 f = 224.8
⇒ f = 26.14
If the frequency of class 70 – 85 is 13 instead of 3.
Then value of mode is unaffected as value of mode affected if there are changes in the values of fm, fm-1 and fm+1.

Question 9.
Find the mean, median and mode of the following :
(i) The data 17, 32, 35, 33, 15, 21, 41, 32, 11, 18, 20, 22, 11, 15, 35, 23, 38, 12.
(ii)

Size of item 11 12 13 14 15 16 17
Frequency 8 13 25 37 23 15 9

Solution:
(i) Required Mean = \(\frac{17+32+35+33+15+21+41+32+11+18+20+22+11+15+35+23+38+12}{18}\)
= \(\frac{431}{18}\) = 23.94
Arranging the given data in ascending order ; we have
11, 11, 12, 15, 15, 17, 18, 20, 21, 22, 23, 32, 32, 33, 35, 35, 38, 41
Here no. of observations = n = 18(even)
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c) Img 3
The observations 11, 15, 32 and 35 repeated equal no. of times i.e. 2 times. Thus, mode is illdefined.

(ii) The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c) Img 4
∴ Mean = \(\frac{\Sigma f x}{\Sigma f}\) = \(\frac{1825}{130}\) ≃ 14.04
Here, \(\frac{N+1}{2}\) = \(\frac{130+1}{2}\) = 65.5 ∴ Median = 14
Further maximum frequency be 37 and corresponding value of x i.e. 14 gives the required value of mode.

Question 10.
The mode of the following distribution is 240. Find out the missing frequency :

Size Frequency Size Frequency
0-100 140 300-400 ?
100-200 230 400-500 150
200-300 270 500-600 140

Solution:
Let the missing frequency be f.
Clearly the maximum frequency be 270 and modal class be 200 – 300.

Here l = 200; fm = 270 ; fm-1 = 230 ; fm+1 = f ; i = 100
Thus, Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) ⇒ 240 = 200 + \(\frac{(270-230)}{540-230-f} \times 100\)
⇒ 40 = \(\frac{4000}{310-f}\) ⇒ 40(310 – f) = 4000 ⇒ 12400 – 40f = 4000 ⇒ 40f = 8400 ⇒f = 210

Question 11.
Find the median, mode, third quartile, 5th decile and 65th percentile from the following :

Value of the item 1 2 3 4 5 6 7 8 9 10
Frequency 25 30 38 45 46 58 32 34 25 22

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c) Img 5
Here \(\frac{N+1}{2}\) = \(\frac{355+1}{2}\) = 178 ∴ Md = 5
Here maximum Frequency be 58 and corresponding value of x i.e. 6 be the required value of mode.

Q3 : Here \(\frac{3(\mathrm{~N}+1)}{4}\) = \(\frac{3 \times 356}{4} \) = 267 and corresponding c.f be 274 and the corresponding value of x gives the required value of Q3. Thus Q3 = 7

D5 : Here, \(\frac{5(\mathrm{~N}+1)}{10}\) = \(\frac{5 \times 356}{10}\) = 178
∴ D6 = size of 178th item = 5

P65 ; Here, \(\frac{65(\mathrm{~N}+1)}{100}\) = \(\frac{65 \times 356}{100}\) = 231.4
∴ P65 = size of 231.4th item = 6

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c)

Question 12.
Find median, mean and modal marks and also determine the limits between which 80% of the students have secured marks.

Marks No. of students Marks No. of students
0-10 15 50-60 80
10-20 25 60-70 70
20-30 52 70-80 10
30-40 56 80-90 5
40-50 78 90-100 2

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(c) Img 6
Then by Step-deviation method, we have
Mean \(\bar{x}\) = A + \(\frac{\Sigma f d^{\prime}}{\mathrm{N}}\) × i = 45 – \(\frac { 15 }{ 393 }\) × 10 = 44.62
Here \(\frac { N }{ 2 }\) = \(\frac { 393 }{ 2 }\) = 196.5 which lies in 40 – 50.
Thus median class be 40 – 50.
Here
l = 40; f = 78; c = 148 ; i = 10
∴ Md = \(l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times i\) = 40 + \(\frac{196.5-148}{78} \times 10\) = 40 + 6.2195 = 46.22
Clearly modal class be 50 – 60.
Here l = 50 ; fm = 80 ; fm-1 = 78 ; fm+1 = 70 ; i = 10
∴ Mode = \(l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times i\) = 50 + \(\frac{80-78}{160-78-70}\) × 10 = 50 + \(\frac { 20 }{ 12 }\) = 51.67
P10: Here \(\frac{10 \times N}{100}\) = \(\frac{10 \times 393}{100}\) = 39.3 which lies in 10 – 20
Here l = 10; c = 15; f = 25; i = 10
\(\mathrm{P}_{90}=l+\frac{\frac{90 \mathrm{~N}}{100}-\mathrm{C}}{f} \times i\) = \(60+\frac{353.7-306}{70} \times 10\) = 66.81
The required limits between which 80% students have secured marks be 19.72 and 66.81.

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Effective ISC Class 11 Maths Solutions S Chand Chapter 28 Statistics Ex 28(b) can help bridge the gap between theory and application.

S Chand Class 11 ICSE Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 1.
Find the median of the following sets of data:
(i) 2, 3, 5, 7, 9
(ii) 4, 8, 12, 16, 20, 23, 28, 32
(iii) 60, 33, 63, 61, 44, 48, 51
(iv) 13, 22, 25, 8, 11, 19, 17, 31, 16, 10
Solution:
(i) arranging the given data in ascending order; we have 2, 3, 5, 7, 9
Here, no. of observations = n = 5 (odd)
∴ Md = size of \(\left(\frac{n+1}{2}\right)\)th observation = size of \(\left(\frac{5+1}{2}\right)\)th term = size of 3rd term = 5

(ii) The given data is already in ascending order.
Here no. of observations = n = 8 (even)
∴ Median = \(\frac{\left(\frac{n}{2}\right) \text { th term }+\left(\frac{n}{2}+1\right) \text { th term }}{2}\) = \(\frac{4 \text { th term }+5 \text { th term }}{2}\) = \(\frac{16+20}{2}\) = 18

(iii) Arranging the given data in ascending order; we have, 33, 44, 48, 51, 60, 61, 63
Here no. of observations = n = 7 (odd)
∴ Median = size of \(\left(\frac{n+1}{2}\right)\)th term = size of \(\left(\frac{7+1}{2}\right)\)th term = size of 4th term = 51

(iv) Arranging the given data in ascending order, we get, 8, 10, 11, 13, 16, 17, 19, 22, 25, 31
Here no. of observations = n = 10 (even)
∴ Median = size of =
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 1

Question 2.
Find the median of the following data:
41, 43, 127, 99, 61, 92, 71, 58, 57. If 58 is replaced by 85, what will be the new median?
Solution:
Arranging the given data in ascending order; we get
41, 43, 57, 58, 61, 71, 92, 99, 127,
Here no. of observations = n = 9 (odd)
∴ Median = size of \(\left(\frac{n+1}{2}\right)\)th term = size of \(\left(\frac{9+1}{2}\right)\)th term = size of 5th term = 61
When observation 58 is replaced by 85,
Then data arranged in ascending order is an under : 41, 43, 57, 58, 61, 71, 92, 99, 127,
Then median = size of \(\left(\frac{9+1}{2}\right)\)th term = size of 5th term = 71

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 3.
Calculate the median of the following incomes.

Wages in ₹ 20 21 22 23 24 25 26 27 28
No. of workers 8 10 11 16 20 25 15 9 6

Solution:
The table of values is given as under:

Wages in (₹) No. of workers c.f. Wages in ₹ No. of workers c.f
20 8 8 25 25 90
21 10 18 26 15 105
22 11 29 27 9 114
23 16 45 28 6 120
24 20 65

Here Md = \(\left(\frac{n+1}{2}\right)\)th item = size of \(\left(\frac{120+1}{2}\right)\)th item = size of 60.5th term = 24
Thus median income of workers be ₹ 24.

Question 4.
Compute the median of the following distributions:

f 2 3 4 5 6 7
x 3 8 10 12 16 14

Solution:
The table of values is given as under:

x 3 8 10 12 16 14
f 2 3 4 5 6 7 Σf = N = 27
c.f 2 5 9 14 20 27

Here Σf = = 27 ∴ Md = size of \(\left(\frac{N+1}{2}\right)\)th item = size of 14th item = 12

Question 5.
Marks obtained by 38 students are given below. Calculate the median marks:

Marks 20 90 50 70 60 95
No. of students 4 5 8 10 6 5

Solution:
The table of values is given as under:

Marks Frequency c.f
20 4 4
90 5 9
50 8 17
70 10 27
60 6 33
95 5 38
Σf = N = 38

Here Md = size of \(\left(\frac{N+1}{2}\right)\)th item = size of \(\left(\frac{38+1}{2}\right)\)th item = size of 19.5th item = 70 [since value 19.5 lies under c.f column in 27]

Question 6.
Find whether the following statements are true or false:
(i) The median of a frequency distribution is the most commonly occurring value.
(ii) The median of a discrete ungrouped frequency distribution containing a number of items is the value of the middle item, the data being arranged in ascending or descending order.
Solution:
(i) False, Mode of a frequency distribution is the most commonly occurring value.
(ii) True, Md = size of \(\left(\frac{n+1}{2}\right)\)th item

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 7.
In a school examination it is decided that exactly half the pupils will pass. Name the measure of central tendency that is used.
Solution:
Since by definition of median, equal number of items above and below the median. Thus median’s exactly the middle point of array of given numbers. Since it is given that exactly half the pupils will pass. Thus the measure of central tendency that is used be median.

Question 8.
(1, 2, 3, 6, 8) is a set of five positive integers whose mean is 4 and median is 3. Write down two other sets of five positive integers, each having the same mean and median as this set.
Solution:
For given five observations, mean is 4 and median is 3.
Let the observations 1, 2, 3, 5, 9
∴ Mean = \(\frac{1+2+3+5+9}{5}\) = 4 and Md = size of \(\left(\frac{5+1}{2}\right)\)th item = size of 3rd item = 3
Let the observations are 1, 2, 3, 4, 10
Here Mean = \(\frac{1+2+3+4+10}{5}\) = 4 and Md = 3

Question 9.
Find the median from the following distribution:

Marks 10-25 25-40 40-55 55-70 70-85 85-100
Frequency 6 20 44 26 3 1

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 2
Here \(\frac { N }{ 2 }\) = \(\frac { 100 }{ 2 }\) 50 (even) which lies in median class 40-55
∴ l = 40; f = 44; C = 26 and i = 15
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 3
Here the required median marks are 48.18 marks.

Question 10.

Class Interval 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50
Frequency 7 10 13 26 35 22 11 6

Solution:
Here class intervals are discontinuous, we make it continuous by using
adjustment factor = \(\frac { 16-15 }{ 2 }\) = 0.5 which is to be subtracting from lower limit and adding to upper limit of each class interval.
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 4
Here \(\frac { N }{ 2 }\) = \(\frac { 130 }{ 2 }\) = 65 which lies in median class 30.5 – 35.5
Thus, l = 30. 5; f = 35; c = 56; i = 5
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 5

Question 11.

Value Frequency Value Frequency
Less than 10 4 Less than 50 96
Less than 20 16 Less than 60 112
Less than 30 40 Less than 70 120
Less than 40 76 Less than 80 125

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 6
Here \(\frac { N }{ 2 }\) = \(\frac { 125 }{ 2 }\) = 62.5 which lies in median class 30 – 40.
Thus, l = 30; f = 36; c = 40; i = 10
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 7

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 12.

Size Frequency Size Frequency
More than 50 0 More than 20 123
More than 40 40 More than 10 165
More than 30 98

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 8
Here \(\frac { N }{ 2 }\) = \(\frac { 165 }{ 2 }\) = 82.5 which lies in median class 30 – 40.
Thus, l = 30; f = 58; c = 67; i = 10
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 9

Question 13.
Find the median and first and third quartile for the following data:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
Solution:
Given data is already in ascending order: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
Here number of observations = n = 11 (odd)
∴ Md = size of \(\left(\frac{n+1}{2}\right)\)th item = size of \(\left(\frac{11+1}{2}\right)\)th item = size of 6th item = 12
Q1 = size of \(\left(\frac{n+1}{4}\right)\)th item = size of \(\left(\frac{11+1}{4}\right)\)th item = size of 3rd item = 6
and Q3 = size of \(3\left(\frac{n+1}{4}\right)\)th item = size of \(\left(\frac{11+1}{4}\right)\)th item = size of 9th item = 18

Question 14.
Compute Q1, Q3, D3, D6 and D8 for the following data:
14, 7, 13, 12, 13, 17, 8, 10, 6, 15, 18, 21, 20
Solution:
Arranging the given data in ascending order: 6, 7, 8, 10, 12, 13, 14, 15, 17, 18, 20, 21
Here no. of observations = n = 13 (odd)
Q1 = size of \(\left(\frac{n+1}{4}\right)\)th item = size of \(\left(\frac{13+1}{4}\right)\)th item = size of 3,5th item = 3rd item + 0.5 (4th item – 3rd item) = 8 + 0.5 (10 – 8) = 8 + 1 = 9

Q3 = size of \(\left(\frac{n+1}{4}\right)\)th item = size of \(3\left(\frac{13+1}{4}\right)\)th item = size of 10.5th item = 10th item + 0.5 (11th item – 10th item) = 17 + 0.5 (18 – 17) = 17.5

D3 = size of \(\left(\frac{n+1}{10}\right)\)th item = size of \(3\left(\frac{13+1}{10}\right)\)th item = size of 4.2th item = 4th item + 0.2 (5th item – 4th item) = 10 + 0.2 (12 – 10) = 10 + 0.4 = 10.4

D6 = size of \(\left(\frac{n+1}{10}\right)\)th item = size of \(6\left(\frac{13+1}{10}\right)\)th item = size of 8.4th item = 8th item + 0.4 (9th item – 8th item) = 14 + 0.4 (15 – 14) = 14.4

D8 = size of \( 8\left(\frac{n+1}{10}\right)\)th item = size of 11.2th item = 11 th item + 0.2 (12th – 11th) = 18 + 0.2 (20 – 18) = 18.4

Question 15.
Following are the scores of 12 students in a class test of 30 marks:
18, 20, 9, 15, 21, 26, 14, 13, 27, 22, 16, 28 Find D7 and P33.
Solution:
Arranging the data in ascending order : 9, 13, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28
Here no. of observations = n = 12
∴ D7 = size of 7\(\left(\frac{n+1}{10}\right)\)th item = size of 7 \(\left(\frac{12+1}{10}\right)\)th item = size of 9.1th item = 9th item + 0.1 (10th – 9th item) = 22 + 0.1 (26 – 22) = 22.4
P33 = size of 33 \(\left(\frac{n+1}{100}\right)\)th item = size of 33 \(\left(\frac{12+1}{100}\right)\)th item = size of 4.29 th item = 4th item + 0.29 (5th item – 4th item) = 15 + 0.29 (16 – 15) = 15.29

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 16.
Compute Q1, Q3, Q6 and P45 for the following data:

x 18 19 20 21 22 23 24 25 26 27
f 15 18 25 27 40 25 19 16 8 7

Solution:
We construct the following table:

xi 18 19 20 21 22 23 24 25 26 27
fi 15 18 25 27 40 25 19 16 8 7 Σfi = 200
Cumulative freq. 15 33 58 85 125 150 169 185 193 200

Q1 = \(\left(\frac{n+1}{4}\right)\)th value = \(\left(\frac{200+1}{4}\right)\)th value = 50.25th value
= 50th value + 0.25 (51th value – 50th value) = 20 + 0.25 (20 – 20) = 20 [both 51th and 50th values are same]

Q3 = 3 \(\left(\frac{n+1}{4}\right)\)th value = 3 \(\left(\frac{200+1}{4}\right)\)th value = 150.75th value = 150th value + 0.75 (151th value – 150th value) = 23 + 0.75 (24 – 23) = 23.75

D6 = 6 \( \left(\frac{n+1}{10}\right)\)th value = 6 \(\left(\frac{200+1}{10}\right)\)th value = 120.6th value = 120th value + 0.6 (121th value – 120th value) = 22 + 0.6(22 – 22) = 22

P45 = 45 \(\left(\frac{n+1}{100}\right)\)th value = 45 \(\left(\frac{200+1}{100}\right)\)th value = 90.45th value = 90th value + 0.45 (91th value – 90th value) =22 + 0.45 (22 – 22) = 22 (since 91th and 90th values are same)

Question 17.
Following are the different sizes and number of shoes in a shoe shop. Calculate median, first quartile, third quartile, 6th decile and 80th percentile.

Size of shoes No. of shoes Size of shoes No. of shoes
4.5 4 8 40
5 8 8.5 20
5.5 12 9 15
6 15 9.5 24
6.5 20 10 12
7 35 10.5 5
7.5 50 11 3

Solution:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 10
∴ Md = size of \(\left(\frac{\mathrm{N}+1}{2}\right)\)th item = size of \(\left(\frac{253+1}{2}\right)\)th item = size of 127 th item = 7.5
Q1 = size of \(\left(\frac{\mathrm{N}+1}{4}\right)\)th item = size of \(\left(\frac{253+1}{4}\right)\)th item = size of 63.5 th item = 7.0
Q3 = size of 3 \(\left(\frac{\mathrm{N}+1}{4}\right)\)th item = size of 3 \(\left(\frac{253+1}{4}\right)\)th item = size of 190.5 th item = 8.5
D6 = size of 6 \(\left(\frac{N+1}{10}\right)\)th item = size of 6 \(\left(\frac{253+1}{10}\right)\)th item = size of 152.4 th item = 8
P80 = size of 80 \(\left(\frac{\mathrm{N}+1}{100}\right)\)th item = size of 80\(\left(\frac{253+1}{100}\right)\)th item = 203.2th item = 9.0

Question 18.
Find out first quartile, third quartile and first decile.

Size of Item f Size of Item f
0 – 10 2 40 – 50 34
10 – 20 18 50 – 60 20
20 – 30 30 60 – 70 6
30 – 40 45 70 – 80 3

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 11

Question 19.
Calculate the median, 3rd decile and 20th percentile for the following data:

x 0-5 5-10 10-15 15-20 20-25
f 7 18 25 30 20

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 12
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 13

Question 20.
Find the interquartile range, quartile deviation for the following data:

Age in years 20 30 40 50 60 70 80
No. of members 3 61 132 153 140 51 3

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 14
For Q1 : Q1 = size of \(\left(\frac{N+1}{4}\right)\)th item = size of \(\left(\frac{543+1}{4}\right)\)th item = size of 136th item = 40

Q3 = size of 3 \(\left(\frac{\mathrm{N}+1}{4}\right)\)th item = size of 3 \(\left(\frac{543+1}{4}\right)\)th item = size of 408 th item = 60
∴ Interquartile range = Q3 – Q1 = 60 – 40 = 20
∴ Q.D = \(\frac{Q_3-Q_1}{2}\) = \(\frac{60-40}{2}\) = 10

OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b)

Question 21.
Find the interquartile range, semi-interquartile range, and coefficient of quartile deviation from the following frequency distribution.

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 60 45 120 25 90 80 120 60

Solution:
The table of values is given as under:
OP Malhotra Class 11 Maths Solutions Chapter 28 Statistics Ex 28(b) Img 15
For Q1 : \(\frac{N}{4}\) = \(\frac{600}{4}\) = 150, which lies in class interval 30 – 40
Here l = 30; f= 120; c = 105; i = 10
∴ Q1 = l + \(\frac{\frac{N}{4}-C}{f}\) × i = 30 + \(\frac{150-105}{120}\) × 10 = 30 + 3.75 = 33.75

For Q3 : \(\frac{3N}{4}\) = \(\frac{3 \times 600}{4}\) = 450 which lies in 70-80
Here l = 70; f= 120; c = 420; i = 10
Q3 = l + \(\frac{\frac{3 N}{4}-C}{f}\) × i = 70 + \(\frac{450-420}{120}\) × 10 = 72.5
∴ Interquartile range = Q3 – Q1 = 72.5 – 33.75 = 38.75
and Semi-interquartile range = \(\frac{Q_3-Q_1}{2}\) = 19.375
and Coeff. of Q.D = \(\frac{Q_3-Q_1}{Q_3+Q_1}\) = \(\frac{72.5-33.75}{72.5+33.75}\) = \(\frac{38.75}{106.25}\) = 0.365

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Students appreciate clear and concise ML Aggarwal Maths for Class 12 Solutions that guide them through exercises.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Very short answer type questions (1 to 14) :

Question 1.
(i) If \(\vec{a}\) is a unit vector and \((\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})\) = 15, then find \(|\vec{x}|\).
(ii) If \(\vec{p}\) is a unit vector and \((\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})\)= 80, then find \(|\vec{x}|\).
Solution:
(i) Given \((\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})\) = 15

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 1

(ii) Given \(\vec{p}\) is a unit vector and \((\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})\)= 80

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 2

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 2.
(i) If \((\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})\) = 12 and \(|\vec{a}|=2|\vec{b}|\), then find \(|\vec{a}| \text { and }|\vec{b}|\).
(ii) If \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 4 and \(\vec{a} \cdot \vec{b}\) = 1, then find \((\vec{a}-\vec{b})^2\).
(iii) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 5 and \(\vec{a} \cdot \vec{b}\) = 8, then find \(|\vec{a}-\vec{b}|\).
(iv) If \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 5 and \(\vec{a} \cdot \vec{b}\) = – 8 then find \(|\vec{a}+\vec{b}|\).
Solution:
(i) Given \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})\) = 12

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 3

(ii) Given \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 4
and \(\vec{a} \cdot \vec{b}\) = 1

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 4

(iii) Given \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 5
and \(\vec{a} \cdot \vec{b}\) = 8

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 5

(iv) Given \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 5
and \(\vec{a} \cdot \vec{b}\) = – 8

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 6

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 3.
Find the magnitude of each of the two vectors \(\vec{a} \text { and } \vec{b}\), having same magnitude such that the angle between them is 60° and their scalar product is \(\frac{9}{2}\).
Solution:
Given \(|\vec{a}|=|\vec{b}|\) ;
θ = 60° ;
\(\vec{a} \cdot \vec{b}=\frac{9}{2}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 7

Question 3 (old).
If the angle between two vectors \(\vec{a} \text { and } \vec{b}\) of equal magnitude is 60° and their scalar product is \(\frac{1}{2}\), then find their magnitudes. (NCERT)
Solution:
Given \(|\vec{a}|=|\vec{b}|\) ……………..(1)
Let θ be the angle between a and b such that θ = 60°
and \(\vec{a} \cdot \vec{b}=\frac{1}{2}\) [using (1)]
We know that
⇒ \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)
⇒ \(\frac{1}{2}=|\vec{a}| \cdot|\vec{b}| \cdot \cos \frac{\pi}{3}\)
⇒ \(\frac{1}{2}=|\vec{a}|^2 \cdot \frac{1}{2}\)
⇒ \(|\vec{a}|=1=|\vec{b}|\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 4.
(i) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = √3 and \(\vec{a} \cdot \vec{b}\) = 3, then find the angle between \(\vec{a} \text { and } \vec{b}\).
(ii) Find the angle between the vectors \(\vec{a} \text { and } \vec{b}\) such that \(|\vec{a}|=|\vec{b}|\) = 3 and \(\vec{a} \cdot \vec{b}\) = 1.
(iii) Find the angle between two vectors having the same length √2 and scalar product – 1.
(iv) If \(|\vec{a}|\) = √3, \(|\vec{b}|\) = 2 and the angle between \(\vec{a} \text { and } \vec{b}\) is 60°, find \(\vec{a} \cdot \vec{b}\) = 1.
Solution:
(i) Given \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 2
and \(\vec{a} \cdot \vec{b}\) = 3
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\).
∴ \(\vec{a} \cdot \vec{b}\) = \(|\vec{a}||\vec{b}|\) cos θ
⇒ 3 = 3 × 2 × cos θ
⇒ cos θ = \(\frac{1}{2}\) ; 0 ≤ θ ≤ π
∴ θ = \(\frac{\pi}{3}\)

(ii) Given \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 3 ;
and \(\vec{a} \cdot \vec{b}\) = 1
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\).
∴ cos θ = \(\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}||\vec{b}|}\)
= \(\frac{1}{3 \times 3}=\frac{1}{9}\)
⇒ θ = cos-1 (\(\frac{1}{9}\))

(iii) Let θ be the angle between two vectors \(\vec{a} \text { and } \vec{b}\) such that
\(|\vec{a}|=|\vec{b}|\) = √2
and \(\vec{a} \cdot \vec{b}\) = – 1
Since cos θ = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\)
= \(\frac{-1}{\sqrt{2} \times \sqrt{2}}=-\frac{1}{2}\)
⇒ cos θ = – cos \(\frac{\pi}{3}\)
= cos (180° – 60°)
= cos 120°
∴ θ = 120°

(iv) Given \(|\vec{a}|\) = √3 , \(|\vec{b}|\) = 2 ;
and θ = 60°
where θ be the angle between \(\vec{a} \text { and } \vec{b}\)
∴ \(\vec{a} \cdot \vec{b}\) = \(|\vec{a}||\vec{b}|\) cos θ
= √3 × 2 × cos 60°
= 2√3 × \(\frac{1}{2}\)
= √3

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 4 (old).
(i) If \(|\vec{a}|\) = 3, \(|\vec{b}|\) = 2 and \(\vec{a} \cdot \vec{b}\) = 3, then find the angle between \(\vec{a} \text { and } \vec{b}\).
(iv) Find the angle between the vectors \(\vec{a} \text { and } \vec{b}\) with magnitudes 1 and 2 respectively, and \(\vec{a} \cdot \vec{b}\) = 1
Solution:
(ii) Given \(|\vec{a}|\) = 2, \(|\vec{b}|\) = √3
and \(\vec{a} \cdot \vec{b}\) = 3
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\).
Then \(\vec{a} \cdot \vec{b}\) = \(|\vec{a}||\vec{b}|\) cos θ
⇒ 3 = 2 × √3 × cos θ
⇒ cos θ = \(\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2}\) ; 0 ≤ θ ≤ π
∴ θ = 30°.

(iv) Given \(|\vec{a}|\) = 1, \(|\vec{b}|\) = 2 ;
and \(\vec{a} \cdot \vec{b}\) = 1
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\).
∴ cos θ = \(\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}||\vec{b}|}\)
= \(\frac{1}{1 \cdot 2}=\frac{1}{2}\)
⇒ θ = \(\frac{\pi}{3}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 5.
Find the angle between the vectors \(2 \hat{i}-\hat{j}+\hat{k}\) and \(3 \hat{i}+4 \hat{j}-\hat{k}\). (NCERT Exemplar)
Solution:
Let \(\vec{a}=2 \hat{i}-\hat{j}+\hat{k}\)
and \(\vec{b}=3 \hat{i}+4 \hat{j}-\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 9

Question 5 (old).
(i) Find the angle between the vectors \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\).
Solution:
Given \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\)
and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 8

Question 6.
Find
(i) \((\vec{b}-\vec{a}) \cdot(3 \vec{a}+\vec{b})\) where \(\vec{a}=\hat{i}-2 \hat{j}+5 \hat{k}\), \(\overrightarrow{\vec{b}}=2 \hat{i}+\hat{j}-3 \hat{k}\). \((\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})\)
(ii) where \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k}\), \(\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}\)
Solution:
(i) Given \(\vec{a}=\hat{i}-2 \hat{j}+5 \hat{k}\),
and \(\overrightarrow{\vec{b}}=2 \hat{i}+\hat{j}-3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 10

(ii) Given \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k}\)
and \(\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 11

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 7.
(i) Find the projection of \(\vec{a} \text { on } \vec{b}\) if \(\vec{a} \cdot \vec{b}\) = 8 and \(\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}\).
(ii) Find the projection of \(\hat{i}+3 \hat{j}+7 \hat{k}\) on the vector \(2 \hat{i}-3 \hat{j}+6 \hat{k}\).
(iii) Find the projection of \(\hat{i}-\hat{j}\) on the vector \(\hat{i}+\hat{j}\).
(iv) Find λ when the projection of \(\hat{i}+\lambda \hat{j}+\hat{k}\) on \(\hat{i}+\hat{j}\) is √2 units.
Solution:
(i) Given \(\vec{a} \cdot \vec{b}\) = 8
and \(\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}\)
∴ \(|\vec{b}|=\sqrt{2^2+6^2+3^2}\)
= \(\sqrt{49}\) = 7
Thus required projection of \(\vec{a} \text { on } \vec{b}\)
= \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{8}{7}\)

(ii) Let \(\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}\)
and \(\vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}\)
∴ \(\vec{a} \cdot \vec{b}=(\hat{i}+3 \hat{j}+7 \hat{k}) \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})\)
= 1 (2) + 3 (- 3) + 7 (6)
= 2 – 9 + 42 = 35
and \(|\vec{b}|=\sqrt{2^2+(-3)^2+6^2}\)
= \(\sqrt{49}\) = 7
∴ required projection of \(\vec{a} \text { on } \vec{b}\) = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\)
= \(\frac{35}{7}\) = 5

(iii) Given \(\vec{a}=\hat{i}-\hat{j}\)
and \(\vec{b}=\hat{i}+\hat{j}\)
∴ \(\vec{a} \cdot \vec{b}\) = 1 (1) – (1) (1) = 0
∴ scalar projection of \(\vec{a} \text { on } \vec{b}\) = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\) = 0

(iv) Let \(\vec{a}=\hat{i}+\lambda \hat{j}+\hat{k}\)
and \(\vec{b}=\hat{i}+\hat{j}\)
∴ \(\vec{a} \cdot \vec{b}=(\hat{i}+\lambda \hat{j}+\hat{k}) \cdot(\hat{i}+\hat{j}+0 \hat{k})\)
= 1 (1) + λ (1) + 1 (0)
= 1 + λ
\(|\vec{b}|=\sqrt{1^2+1^2}=\sqrt{2}\)
We know that projection \(\vec{a} \text { on } \vec{b}\) = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\)
∴ √2 = \(\frac{1+\lambda}{\sqrt{2}}\)
⇒ 1 + λ = 2
⇒ λ = 1.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 8.
(i) If \(\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}\) and \(\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}\), then show that the vectors \(\vec{a}+\vec{b}\) and \(\vec{a}-\vec{b}\) are perpendicular to each other. (NCERT)
(ii) Find λ if \(\vec{a}=3 \hat{i}-\hat{j}+4 \hat{k}\) and \(\vec{b}=-\lambda \hat{i}+3 \hat{j}+3 \hat{k}\) are perpendicular to each other.
(iii) For what value of λ are the vectors \(\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}\) perpendicular to each other ?
Solution:
(i) Given \(\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}\)
and \(\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 12

(ii) Given \(\vec{a}=3 \hat{i}-\hat{j}+4 \hat{k}\)
and \(\vec{b}=-\lambda \hat{i}+3 \hat{j}+3 \hat{k}\)
Since \(\vec{a}\) is ⊥ to \(\vec{b}\)
∴ \(\vec{a} \cdot \vec{b}\) = 0
⇒ \((3 \hat{i}-\hat{j}+4 \hat{k}) \cdot(-\lambda \hat{i}+3 \hat{j}+3 \hat{k})\) = 0
⇒ 3 (- λ) – 1 (3) + 4 (3) = 0
⇒ – 3λ + 9 = 0
⇒ λ = 3.

(iii) Given \(\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}\)
and \(\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}\)
Now \(\vec{a} \text { and } \vec{b}\) are orthogonal or perpendicualr.
∴ \(\vec{a} \cdot \vec{b}\) = 0
⇒ 2 (1) + λ (- 2) + 1 (3) = 0
⇒ 2λ = 5
⇒ λ = \(\frac{5}{2}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 9.
(i) If \(\vec{a} \text { and } \vec{b}\) are unit vectors, then what is the angle between \(\vec{a} \text { and } \vec{b}\) so that \(\sqrt{3} \vec{a}-\vec{b}\) may be a unit vector. (NCERT Exemplar)
(ii) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 3 and \(\vec{a} \cdot \vec{b}\) = 4, then what is the value of \(|\vec{a}+2 \vec{b}|\) ?
(iii) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 3 and \(\vec{a} \cdot \vec{b}\) = 4, find \(|2 \vec{a}-3 \vec{b}|\).
(iv) If \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 3 and \(|2 \vec{a}-\vec{b}|\) = 4, then find \(|2 \vec{a}+\vec{b}|\).
Solution:
(i) Given \(\vec{a} \text { and } \vec{b}\) are unit vectors
∴ \(|\vec{a}|\) = \(|\vec{b}|\) = 1
since \(\sqrt{3} \vec{a}-\vec{b}\) is a unit vector

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 13

(ii) Given \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 3
and \(\vec{a} \cdot \vec{b}\) = 4

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 14

= 22 + 4 (4) + 4 (9)
= 4 + 16 + 36 = 56
∴ \(|\vec{a}+2 \vec{b}|=\sqrt{56}=2 \sqrt{14}\)

(iii) Given \(|\vec{a}|\) = 2, \(|\vec{b}|\) = 3
and \(\vec{a} \cdot \vec{b}\) = 4

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 15

(iv) Given \(|\vec{a}|\) = 2,
\(|\vec{b}|\) = 3
and \(|2 \vec{a}-\vec{b}|\) = 4

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 16

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 10.
If \(\vec{a}, \vec{b}\) are unit vectors and c = \(|\vec{a}+\vec{b}|\), d = \(|\vec{a}-\vec{b}|\), then what is the value of c2 + d2 ?
Solution:
Given c = \(|\vec{a}+\vec{b}|\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 17

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 11.
If \(\vec{a}, \vec{b}, \vec{c}\) are three vectors such that \(\vec{c}=\vec{a}+\vec{b}\) and \(\vec{a} \cdot \vec{b}\) = 0, then show that c2 = a2 + b2.
Solution:
Given \(\vec{c}=\vec{a}+\vec{b}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 18

Question 12.
(i) If \(\vec{a}, \vec{b} \text { and } \vec{c}\) are unit vectors such that \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then find the value of \(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}\). (NCERT)
(ii) If \(\vec{a}, \vec{b}, \vec{c}\) are three vectors \(|\vec{a}|\) = 5, \(|\vec{b}|\) = 12, \(|\vec{c}|\) = 13 and \(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}\) then find the value of \(\).
Solution:
(i) Given \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\) ;
on squaring, we ahve

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 19

(ii) Given \(|\vec{a}|\) = 5 ;
\(|\vec{b}|\) = 12 ;
\(|\vec{c}|\) = 13
and \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\) ;
on squaring we have

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 20

Question 13.
(i) We are given two vectors \(\vec{a} \text { and } \vec{b}\) such that \((\vec{a})^2=(\vec{b})^2\). Is it necessary that \(\vec{a}=\vec{b}\) ? Justify your answer.
(ii) For two non-zero vectors \(\vec{a} \text { and } \vec{b}\), state when \(|\vec{a}+\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2\) holds.
(iii) If \(\vec{a}=\overrightarrow{0}\) or \(\vec{b}=\overrightarrow{0}\), then \(\vec{a} \cdot \vec{b}\) = 0. Is the converse true ? Justify your answer by an example.
(iv) If \(\vec{a}, \vec{b}\) are non – zero vectors and \(\vec{a} \cdot \vec{b}\) ≥ 0, then what can you say about the angle θ between the vectors \(\vec{a} \text { and } \vec{b}\).
Solution:
(i) Let \(\vec{a}=\hat{i}+2 \hat{j}\)
and \(\vec{b}=2 \hat{i}-\hat{j}\)

Here \(\vec{a}^2=|\vec{a}|^2\)
= \(\left(\sqrt{1^2+2^2}\right)^2\)
= \((\sqrt{5})^2\) = 5

and \(\vec{b}^2=|\vec{b}|^2\)
= \(\left(\sqrt{2^2+(-1)^2}\right)^2\)
= \((\sqrt{5})^2\) = 5
i.e. \(\vec{a}^2=\vec{b}^2\) but \(\vec{a} \neq \vec{b}\).

(ii) \(|\vec{a}+\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2\) holds

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 21

(iii) \(\vec{a} \cdot \vec{b}=\overrightarrow{0} \cdot \vec{b}\) = 0
if \(\vec{a}\) = 0
When \(\vec{b}\) = 0 ;
\(\vec{a} \cdot \vec{b}=\vec{a} \cdot \overrightarrow{0}\) = 0
but converse need not be true.
e.g. \(\vec{a}=2 \hat{i}-\hat{j}+\hat{k}\)
and \(\vec{b}=\hat{i}+\hat{j}-\hat{k}\)
but \(\vec{a} \cdot \vec{b}=(2 \hat{i}-\hat{j}+\hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})\)
= 2 (1) – 1 (1) + 1 (- 1)
= 2 – 2 = 0
Here \(\vec{a} \cdot \vec{b}\) = 0 but neither \(\vec{a}=\overrightarrow{0}\) nor \(\vec{b}=\overrightarrow{0}\).

(iv) Since \(\vec{a} \text { and } \vec{b}\) are non-zero vectors.
∴ \(|\vec{a}| \cdot \mid \vec{b}\) > 0
also \(\vec{a} \cdot \vec{b}\) ≥ 0
Thus cos θ = \(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}\) ≥ 0
∴ 0 ≤ θ ≤ \(\frac{\pi}{2}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 14.
If \(\vec{a} \cdot \vec{a}\) = 0 and \(\vec{a} \cdot \vec{b}\) = 0, then what can you say about the vector \(\vec{b}\) ?
Solution:
Given \(\vec{a} \cdot \vec{a}\) = 0
and \(\vec{a} \cdot \vec{b}\) = 0
⇒ \(|\vec{a}|^2\) = 0 i.e. \(\vec{a}=\overrightarrow{0}\)
and (\(\vec{a} \perp \vec{b}\) or \(\vec{a}=\overrightarrow{0}\) or \(\vec{b}=\overrightarrow{0}\))
i.e. \(\vec{a}=\overrightarrow{0}\) and \(\vec{b}\) can be any vector.

Question 15.
Find the angle between the vectors \(\vec{a}+\vec{b}\) and \(\vec{a}-\vec{b}\) if \(\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}\).
Solution:
Given \(\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}\)
and \(\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 22

Question 16.
Find the projection of \(\vec{b}+\vec{c}\) on \(\vec{a}\) where \(\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}\), \(\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}\) and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\).
Solution:
Given \(\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}\),
\(\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}\)
and \(\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}\)

Here \(\vec{b} \cdot \vec{a}=(2 \hat{i}-2 \hat{j}+\hat{k}) \cdot(\hat{i}+2 \hat{j}-2 \hat{k})\)
= 2 (1) – 2 (2) + 1 (- 2)
= 2 – 4 – 2 = – 4

\(\vec{c} \cdot \vec{a}=(2 \hat{i}-\hat{j}+4 \hat{k}) \cdot(2 \hat{i}-2 \hat{j}+\hat{k})\)
= 2 (2) – 1 (- 2) + 4 (1)
= 4 + 2+ 4 = 10

∴ required projection of \(\vec{b}+\vec{c} \text { on } \vec{a}\)
= \(\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}\)
= = \(\frac{(\vec{b} \cdot \vec{a})+(\vec{c} \cdot \vec{a})}{|\vec{a}|}\)
= \(\frac{-4+10}{\sqrt{2^2+(-2)^2+1^2}}\)
= \(\frac{6}{3}\)
= 2

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 17.
(i) If \(\vec{a}=\hat{i}-\hat{j}+7 \hat{k}\) and \(\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}\), then find λ such that \(\vec{a}-\vec{b}\) and \(\vec{a}+\vec{b}\) are perpendicular to each other.
(ii) For any (non-zero) vectors \(\vec{a}\), and \(\vec{b}\) prove that the vectors \(|\vec{a}| \vec{b}+|\vec{b}| \vec{a}\) and \(|\vec{a}| \vec{b}-|\vec{b}| \vec{a}\) are perpendicular to each other. (NCERT)
Solution:
(i) Given \(\vec{a}=\hat{i}-\hat{j}+7 \hat{k}\)
and \(\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}\)
Since \(\vec{a}-\vec{b}\) and \(\vec{a}-\vec{b}\) are ⊥ to each other.
∴ \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})\) = 0
⇒ \(\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b}\) = 0
⇒ \(|\vec{a}|^2-|\vec{b}|^2\) = 0
[∵\(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\)]
⇒ {12 + (- 1)2 + 72} – {52 + (- 1)2 + λ2} = 0
⇒ 51 – (26 + λ2) = 0
⇒ 25 – λ2 = 0
⇒ λ = ± 5

(ii) Now,

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 23

Question 18.
If \(\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}\), \(\vec{b}=-\hat{i}+2 \hat{j}+\hat{k}\) and \(\vec{c}=3 \hat{i}+\hat{j}\) are such that \(\vec{a}+\lambda \vec{b}\) is perpendiculai to \(\vec{c}\), then find the value of λ ?
Solution:
Given \(\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}\),
\(\vec{b}=-\hat{i}+2 \hat{j}+\hat{k}\)
and \(\vec{c}=3 \hat{i}+\hat{j}\)

Now \(\vec{a}+\lambda \vec{b}\)
= \((2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k})\)
= \((2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}\)

Now \(\vec{a}+\lambda \vec{b}\) is ⊥ to \(\vec{c}\)
∴ \(\vec{a}+\lambda \vec{b}\) . \(\vec{c}\) = 0
i.e. \(\) = 0
⇒ 3 (2 – λ) + (2 + 2λ) 1 = 0
⇒ 8 – λ = 0
⇒ λ = 8

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 19.
(i) If \(\vec{c}\) is perpendicular to \(\vec{a} \text { and } \vec{b}\) both, then show that it is perpendicular to \(\vec{a}+\vec{b}\) as well as \(\vec{a}-\vec{b}\).
(ii) Show that the vectors \(\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k})\), \(\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})\) and \(\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})\) are mutually perpendicular unit vccotrs. (NCERT)
(iii) If \(\vec{a} \text { and } \vec{b}\) are unit vectors and θ is the angle between them, then prove that cos \(\frac{\theta}{2}=\frac{1}{2}|\vec{a}+\vec{b}|\).
Solution:
(i) Since \(\vec{c}\) is ⊥ to \(\vec{a} \text { and } \vec{b}\)
∴ \(\vec{c} \cdot \vec{a}\) = \(\vec{c} \cdot \vec{b}\)
Now \(\vec{c} \cdot(\vec{a}+\vec{b})=\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}\)
= 0 + 0 = 0
and \(\vec{c} \cdot(\vec{a}-\vec{b})=\vec{c} \cdot \vec{a}-(\vec{c} \cdot \vec{b})\)
= 0 – 0 = 0
Thus \(\vec{c}\) is ⊥ to both \(\vec{a}+\vec{b} \text { and } \vec{a}-\vec{b}\).

(ii) Given \(\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k})\),
\(\vec{b}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})\)
and \(\vec{c}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 24

(iii) Given \(\vec{a} \text { and } \vec{b}\) s.t. \(|\hat{a}|=|\hat{b}|\) = 1
and given θ be the angle between them
Now, \(|\hat{a}+\hat{b}|^2=(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})\)
= \(|\hat{a}|^2+|\hat{b}|^2+2 \hat{a} \cdot \hat{b}\)
[∵ \(\hat{a}^2=|\vec{a}|^2, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\)]
= 1 + 1 + 2 \(|\hat{a}|=|\hat{b}|\) cos θ
= 2 + 2 cos θ
= 2 (1 + cos θ)
= 2 × 2 cos2 \(\frac{\theta}{2}\)
= 4 cos2 \(\frac{\theta}{2}\)
⇒ \(|\hat{a}+\hat{b}|=2 \cos \frac{\theta}{2}\)
\(\cos \frac{\theta}{2}=\frac{1}{2}|\hat{a}+\hat{b}|\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 20.
Find the angles which the vector \(\vec{a}=3 \hat{i}-6 \hat{j}+2 \hat{k}\) makes with the co-ordinate axes.
Solution:
Given \(\vec{a}=3 \hat{i}-6 \hat{j}+2 \hat{k}\)
Let α, β and γ are the angle made by the vector with the coordinate axes.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 26

Question 21.
(i) Dot products of a vector with vectors \(\), \(\) and \(\) are respectively – 1, 6 and 5. Find the vector.
(ii) The dot product of a vector with the vectors \(\), \(\)and \(\) are 0, 5 and 8 respectively. Find the vector.
Solution:
(i) Let the required vector be
\(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\) …………………..(1)
Now \(\vec{a} \cdot(3 \hat{i}-5 \hat{k})\) = – 1
⇒ 3a1 – 5a3 = – 1 ………………………..(2)
also \(\vec{a} \cdot(2 \hat{i}+7 \hat{j})\) = 6
⇒ 2a1 + 7a2 = 6 ……………………….(3)
and \(\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})\) = 5
⇒ a1 + a2 + a3 = 5 ………………(4)
eqn. (3) – 7 × eqn. (4) ; we have
– 5a1 – 7a3 = – 29
⇒ 5a1 + 7a3 = 29 ………………………(5)
On solving (2) and (5) we get
46a1 = 145 – 7 = 138
⇒ a1 = 3 ;
a3 = 2
∴ from (4) ;
3 + 2 + a2 = 5
⇒ a2 = 0

(ii) Let the required vector be
\(\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}\) ……………..(1)
given, \(\vec{a} \cdot(\hat{i}+\hat{j}-3 \hat{k})\) = 0

⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}-3 \hat{k})\) = 0
⇒ x + y – 3z = 0 ………………..(2)
also, \(\vec{a} \cdot(\hat{i}+3 \hat{j}-2 \hat{k})\) = 5

⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+3 \hat{j}-2 \hat{k})\) = 5
⇒ x + 3y – 2z = 5 ……………….(3)
also, \(\vec{a} \cdot(2 \hat{i}+\hat{j}+4 \hat{k})\) = 8

⇒ \((x \hat{i}+y \hat{j}+z \hat{k}) \cdot(2 \hat{i}+\hat{j}+4 \hat{k})\) = 8
⇒ 2x + y + 4z = 8 ………………(4)

eqn. (3) – eqn. (2) gives ;
2y + z = 5 ………………….(5)
eqn. (4) – 2 × eqn. (3) gives ;
– 5y + 8z = – 2 ……………………(6)
eqn. (6) – 8 × eqn. (5) gives ;
– 5y – 16y = – 2 – 40
⇒ – 21 y = – 42
⇒ y = 2
∴ from(5) ;
4 + z = 5
⇒ z = 1
∴ from (2) ;
x + 2 – 3 = 0
⇒ x = 1
∴ required vector be \(\vec{a}=\hat{i}+2 \hat{j}+\hat{k}\).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 22.
Show that the vectors \(\vec{a}=\hat{i}-3 \hat{j}-5 \hat{k}\), \(\vec{b}=2 \hat{i}-\hat{j}+\hat{k}\) and \(\vec{c}=\hat{i}+2 \hat{j}+6 \hat{k}\) form a right-angled triangle.
Solution:
Given \(\vec{a}=\hat{i}-3 \hat{j}-5 \hat{k}\),
\(\vec{b}=2 \hat{i}-\hat{j}+\hat{k}\)
and \(\vec{c}=\hat{i}+2 \hat{j}+6 \hat{k}\)

Now \(\vec{a}+\vec{c}=(\hat{i}-3 \hat{j}-5 \hat{k})+(\hat{i}+2 \hat{j}+6 \hat{k})\)
= \(2 \hat{i}-\hat{j}+\hat{k}=\vec{b}\)

∴ \(\vec{a}, \vec{b} \text { and } \vec{c}\) are coplanar.
also no two of these vectors are parallel.
∴ gives vectors forms a triangle.

Also \(\vec{a} \cdot \vec{b}=(\hat{i}-3 \hat{j}-5 \hat{k}) \cdot(2 \hat{i}-\hat{j}+\hat{k})\)
= 1 (2) – 3 (- 1) – 5 (1) = 0
These dot product of two non-zero vectors is zero.
Therefore these vectors \(\vec{a} \text { and } \vec{b}\) are ⊥ to each other.
Hence the sides represented by these vectors are perpendicular.
Thus, the given vectors forms a right angled triangle.

Question 23.
If A, B, C have position vectors \(\hat{j}+\hat{k}\), \(3 \hat{i}+\hat{j}+5 \hat{k}\) and \(3 \hat{j}+3 \hat{k}\) respectively, then prove that ∆ABC is right angled at C.
Solution:
Let \(\vec{a}=\hat{j}+\hat{k}\),
\(\vec{b}=3 \hat{i}+\hat{j}+5 \hat{k}\)
and \(\vec{c}=3 \hat{j}+3 \hat{k}\)
are the position vectors of points A, B, C respectively.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 27

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 24.
If the vertices of a AABC are A(- 1, 3, 2), B (2, 3, 5) and C (3, 5, – 2), then show that it is right angled at A. Also find the other two angles.
Solution:
The position vectors of the vertices A, B and C of a triangle are \(-\hat{i}+3 \hat{j}+2 \hat{k}\), \(2 \hat{i}+3 \hat{j}+5 \hat{k}\) and \(3 \hat{i}+5 \hat{j}-2 \hat{k}\)

Hence, the three sides of the triangle are represented by \(\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}} \text { and } \overrightarrow{\mathrm{CA}}\).

∴ \(\overrightarrow{\mathrm{AB}}\) = P.V 0f B – P.V 0f A
= \((2 \hat{i}+3 \hat{j}+5 \hat{k})-(-\hat{i}+3 \hat{j}+2 \hat{k})\)
= \(3 \hat{i}+3 \hat{k}\)

\(\overrightarrow{\mathrm{BC}}\) = P.V 0f C – P.V 0f B
= \((3 \hat{i}+5 \hat{j}-2 \hat{k})-(2 \hat{i}+3 \hat{j}+5 \hat{k})\)
= \(\hat{i}+2 \hat{j}-7 \hat{k}\)

\(\overrightarrow{\mathrm{CA}}\) = P.V 0f A – P.V 0f C
= \((-\hat{i}+3 \hat{j}+2 \hat{k})-(3 \hat{i}+5 \hat{j}-2 \hat{k})\)
= \(-4 \hat{i}-2 \hat{j}+4 \hat{k}\)

∴ \(\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CA}}\) = \((3 \hat{i}+3 \hat{k}) \cdot(-4 \hat{i}-2 \hat{j}+4 \hat{k})\)
= 3 (- 4) + 0 (- 2) + 3 (4) = 0

Thus \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{CA}}\) are ⊥to each other.
∴ ∠A = 90
Therefore, ∆ ABC is right-angled at A.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 28

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 29

Question 25.
Prove that two proper vectors \(\vec{a} \text { and } \vec{b}\) are at right angles iff \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^2+|\vec{b}|^2\). (NCERT)
Solution:

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 30

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 26.
If the coordinates of four points are A (2, 3, 4) , B (5, 4, – 1), C (3, 6, 2) and D (1, 2, 0), then show that \(\overrightarrow{\mathrm{AB}}\) is perpendiculat to \(\overrightarrow{\mathrm{CD}}\). (NCERT Exemplar)
Solution:
Given P.V. of A = \(2 \hat{i}+3 \hat{j}+4 \hat{k}\) ;
P.V. of B = \(5 \hat{i}+4 \hat{j}-\hat{k}\) ;
P.V. of C = \(3 \hat{i}+6 \hat{j}+2 \hat{k}\)
and P.V. of D = \(\hat{i}+2 \hat{j}+0 \hat{k}\)

∴ \(\overrightarrow{\mathrm{AB}}\) = P.V. of B – P.V. of A
= \((5 \hat{i}+4 \hat{j}-\hat{k})-(2 \hat{i}+3 \hat{j}+4 \hat{k})\)
= \(3 \hat{i}+\hat{j}-5 \hat{k}\)

∴ \(\overrightarrow{\mathrm{CD}}\) = P.V. of D – P.V. of C
= \((\hat{i}+2 \hat{j}+0 \hat{k})-(3 \hat{i}+6 \hat{j}+2 \hat{k})\)
= \(-2 \hat{i}-4 \hat{j}-2 \hat{k}\)

Here \(\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}}\)
= \((3 \hat{i}+\hat{j}-5 \hat{k}) \cdot(-2 \hat{i}-4 \hat{j}-2 \hat{k})\)
= 3 (- 2) + 1 (- 4) – 5 (- 2)
= – 6 – 4 + 10 = 0

Question 27.
If \(\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}\), then find the angle between \(2 \vec{a}+\vec{b}\) and \(\vec{a}+2 \vec{b}\).
Solution:
Given \(\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}\)
and \(\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 31

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 28.
If the points A, B and C with position vectors \(2 \hat{i}+\hat{j}+\hat{k}\), \(\hat{i}-3 \hat{j}-5 \hat{k}\) and \(\alpha \hat{i}-3 \hat{j}+\hat{k}\) respectively are the vertices of a right-angled triangle at C, then find the value (s) of a.
Solution:
Since the points A, B and C with position vectors \(2 \hat{i}+\hat{j}+\hat{k}\), \(\hat{i}-3 \hat{j}-5 \hat{k}\) and \(\alpha \hat{i}-3 \hat{j}+\hat{k}\) are the vertices of right angled triangle at C.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 32

Question 29.
Let \(\vec{a} \text { and } \vec{b}\) be unit vectors. If the vectors \(\vec{c}=\vec{a}+2 \vec{b}\) and \(\vec{d}=5 \vec{a}-4 \vec{b}\) are perpendicualr to each other, then find the angle between \(\vec{a} \text { and } \vec{b}\).
Solution:
Since \(\vec{a} \text { and } \vec{b}\) are unit vectors

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 33

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 30.
Express the vector \(\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}\) as the sum of two vectors such that one is parallel to the vector \(\vec{b}=3 \hat{i}+\hat{k}\) and the other is perpendicular to \(\).
Solution:
We want to find the vectors \(\vec{c} \text { and } \vec{d}\) such that
\(\vec{a}=\vec{c}+\vec{d}\) …………………………..(1)
given \(\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}\)
Since \(\vec{c}\) is parallel to \(\vec{a}\)
∴ \(\vec{c}=\lambda \vec{b}\) for some scalar λ
⇒ \(\vec{c}=\lambda(3 \hat{i}+\hat{k})\)
∴ From (1) ; we have
\(\vec{d}=\vec{a}-\vec{c}\)
= \((5 \hat{i}-2 \hat{j}+5 \hat{k})-(3 \lambda \hat{i}+\lambda \hat{k})\)
⇒ \(\vec{d}=(5-3 \lambda) \hat{i}-2 \hat{j}+(5-\lambda) \hat{k}\)
also it is given that \(\vec{d} \perp \vec{b}\)
⇒ \(\vec{d} \cdot \vec{b}\) = 0
\([(5-3 \lambda) \hat{i}-2 \hat{j}+(5-\lambda) k] \cdot(3 \hat{i}+\hat{k})\) = 0
3 (5 – 3λ) – 2 (0) + (5 – λ) . 1 = 0
15 – 9λ + 5 – λ = 0
⇒ 10λ = 20
⇒ λ = 2.
Thus \(\vec{c}=2(3 \hat{i}+\hat{k})=5 \hat{i}+2 \hat{k}\)
and \(\vec{d}=[(5-6) \hat{i}-2 \hat{j}+(5-2) \hat{k}]\)
= \(-\hat{i}-2 \hat{j}+3 \hat{k}\)

Question 31.
If \(\vec{\alpha}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{\beta}=2 \hat{i}+\hat{j}-4 \hat{k}\) then express \(\vec{\beta}\) in the form \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\). where \(\overrightarrow{\beta_1}\) is parallel to \(\vec{\alpha} \text { and } \overrightarrow{\beta_2}\) is perpendicualr to \(\vec{\alpha}\).
Solution:
Given \(\vec{\alpha}=3 \hat{i}+4 \hat{j}+5 \hat{k}\)
and \(\vec{\beta}=2 \hat{i}+\hat{j}-4 \hat{k}\)
Given \(\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2\) ……………….(1)
given \(\overrightarrow{\beta_1}\) is parallel to \(\vec{\alpha}\)
∴ \(\overrightarrow{\beta_1}=\lambda \vec{\alpha}\) for some scalar λ.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 34

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 32.
If the vectors \(\vec{a}=\hat{i}-\hat{j}+2 \hat{k}\), \(\vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}\) and \(\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}\) are mutually orthogonal, then find the values of λ and μ.
Solution:
Given \(\vec{a}=\hat{i}-\hat{j}+2 \hat{k}\)
\(\vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}\)
and \(\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}\)
Since given vectors \(\vec{a}, \vec{b} \text { and } \vec{c}\) are mutually orthogonal.
∴ \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}\) = 0
Now \(\vec{a} \cdot \vec{c}\) = 0
⇒ \((\hat{i}-\hat{j}+2 \hat{k}) \cdot(\lambda \hat{i}+\hat{j}+\mu \hat{k})\) = 0
⇒ λ – 1 + 2µ = 0
⇒ λ + 2µ = 1 ………………………………(1)
and \(\vec{b} \cdot \vec{c}\) = 0
⇒ \((2 \hat{i}+4 \hat{j}+\hat{k}) \cdot(\lambda \hat{i}+\hat{j}+\mu \hat{k})\) = 0
⇒ 2λ + 4 + µ = 0
⇒ 2λ + µ = – 4 ………………..(2)
On solving (1) and (2) ; we have
λ = – 3 ; µ = 2

Question 33.
Find the values of λ and µ if the vectors \(\lambda \hat{i}-3 \hat{j}-6 \hat{k}\) and \(3 \hat{i}-\mu \hat{j}-2 \hat{k}\) are mutually perpendicular vectors of equal magnitude.
Solution:
Let \(\vec{a}=\lambda \hat{i}-3 \hat{j}-6 \hat{k}\)
and \(\vec{b}=3 \hat{i}-\mu \hat{j}-2 \hat{k}\)
Since \(\vec{a} \text { and } \vec{b}\) are mutually ⊥ to each other.
∴ \(\vec{a} \cdot \vec{b}\) = 0
⇒ \((\lambda \hat{i}-3 \hat{j}-6 \hat{k}) \cdot(3 \hat{i}-\mu \hat{j}-2 \hat{k})\) = 0
⇒ λ (3) – 3 (- µ) – 6 (- 2) = 0
⇒ 3λ + 3µ + 12 = 0
⇒ λ + µ + 4 = 0 ………………..(1)
also \(|\vec{a}|=|\vec{b}|\)
⇒ \(\sqrt{\lambda^2+(-3)^2+(-6)^2}=\sqrt{3^2+(-\mu)^2+(-2)^2}\)
⇒ \(\sqrt{\lambda^2+9+36}=\sqrt{9+\mu^2+4}\)
⇒ \(\sqrt{\lambda^2+45}=\sqrt{13+\mu^2}\)
On squaring ; we have
λ2 – µ2 = 13 – 45 = – 32
⇒ (λ – µ) (λ + µ) = – 32
⇒ (λ – µ) (- 4) = – 32 [using (1)]
⇒ λ – µ = 8 ……………………(2)
On adding (1) and (2) ; we have
2λ = 4
⇒ λ = 2
∴ from (1) ;
µ = – 6.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 34.
If \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\), then find a unit vector which is perpendicular to \(\vec{a}\) and is coplanar with \(\vec{a} \text { and } \vec{b}\).
Solution:
Let \(\vec{r}\) be any vector in the plane of \(\vec{a} \text { and } \vec{b}\).
Then \(\vec{r}=\lambda \vec{a}+\mu \vec{b}\),
where λ, µ are scalars.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 25

Question 35.
Find a vector of magnitude 5 units which is coplanar with vectors \(3 \hat{i}-\hat{j}-\hat{k}\) and \(\hat{i}+\hat{j}-2 \hat{k}\) and is perpendicular to the vector \(2 \hat{i}+2 \hat{j}+\hat{k}\).
Solution:
Let the required vector be \(\vec{d}=a \hat{i}+b \hat{j}+c \hat{k}\)
Since \(|\vec{d}|\) = 5 units
⇒ a2 + b2 + c2 = 25
Let given vectors are \(\vec{\alpha}=3 \hat{i}-\hat{j}-\hat{k}\)
and \(\vec{\beta}=\hat{i}+\hat{j}-2 \hat{k}\)
Since \(\vec{d}\) is coplanar with \(\vec{\alpha} \text { and } \vec{\beta}\).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 35

⇒ 2a + 2b + c = 0 ………………(5)
Using eqn. (2), (3) and (4) in eqn. (5) ; we have
2 (3λ + μ) + 2 (- λ + μ) + (- λ – 2μ) = 0
⇒ 3λ + 2μ = 0
⇒ μ = – \(\frac{3 \lambda}{2}\) ………………(6)
∴ eqn. (2) ; (3) and (4) becomes ;

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 36

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 36.
(i) If \(\vec{a}\),\(\vec{b}\) and \(\vec{c}\) are vectors such that \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then show taht the angle θ between \(\vec{b} \text { and } \vec{c}\) is given that cos θ = \(=\frac{|\vec{a}|^2-|\vec{b}|^2-|\vec{c}|^2}{2|\vec{b}||\vec{c}|}\).
(ii) If \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\) and \(|\vec{a}|=5,|\vec{b}|=6 \quad \text { and } \quad|\vec{c}|=9\), then find the angle between \(\vec{a} \text { and } \vec{b}\).
Solution:
(i)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 37

(ii) Given \(|\vec{a}|=5\) ;
\(|\vec{b}|=6\) ;
and \(|\vec{c}|=9\)
Let θ be the angle between \(\vec{a} \text { and } \vec{b}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 38

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 38.
In any ∆ABC, prove by vector method that cos B = \(\frac{c^2+a^2-b^2}{2 c a}\). (ISC 2010).
Solution:
Let \(\overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}, \overrightarrow{\mathrm{AB}}\) represents the vectors \(\vec{a}, \vec{b} \text { and } \vec{c}\) respectively
Now \(\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{0}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 39

Question 39.
Prove by vector method that a diameter of a circle will subtend a right angle at a point on its circumference. (ISC 2003)
Solution:
Let O be the centre of circle with AB as diameter
and P be any point on the circumference of circle.
Take O as origin
let \(\overrightarrow{\mathrm{OP}}=\vec{b}\) ;
\(\overrightarrow{\mathrm{OB}}=\vec{a}\) ;
∴ \(\overrightarrow{\mathrm{OA}}=-\vec{a}\)
Now we want to prove that
∠APB = 90°

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 40

∴ ∠APB = 90°
Hence, the diameter of a circle will subtend a right angle at a point on its circumference.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2

Question 40.
Prove by vector method that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.
Solution:
Let ABCD is a rectangle.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.2 41

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Students appreciate clear and concise ML Aggarwal Maths for Class 12 Solutions that guide them through exercises.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 1.
Classify the following measures as scalars and vectors:
(i) 5 seconds
(ii) 20 m/sec2
(iii) 1000 cm3
(iv) 2 metres north-west
(v) 2 km. (NCERT)
Solution:
(i) 5 seconds is a time so it is a scalar, since it has only magnitude.
(ii) 20 rn/sec2 is acceleration, since it has both
magnitude and direction hence it is a vector quantity.
(iii) 1000 cm3 is volume so it has only magnitude and hence represents a scalar quantity.
(iv) 2 metres north-west is displacement so it has both magnitude and direction and hence represents a vector quantity.
(v) 40 watt is voltage so it has only magnitude and hence represents a scalar.
(vi) 2 km is distance so it has only magnitude and hence represents a scalar.

Question 1 (old).
(i) Represent graphically a displacement of 30 km, 30° east of north. (NCERT)
(ii) Represent graphically a displacement of 40 km, 30° west of south. (NCERT)
Solution:
(i) Here \(\overrightarrow{\mathrm{OP}}\) represents the displacement of 30 km, 30° east of north.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 1

Scale 1 cm = 20 km

(ii) Here \(\overrightarrow{\mathrm{OP}}\) represents a displacement of 40 km, 30° west of south

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 2

Scale 1 cm = 20 km

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 2.
The adjoining figure is a square. Identify the following vectors :
(i) Equal
(ii) Co-initial
(iii) Collinear but not equal (NCERT)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 3

Solution:
(i) Two vectors \(\vec{a} \text { and } \vec{b}\) are equal if they have equal magnitude, same or parallel support and same direction.
∴ \(\vec{b} \text { and } \vec{d}\) are equal vectors, since all sides of square are equal.
(ii) vectors having same initial point are said to be co-initial vectors.
\(\vec{a} \text { and } \vec{d}\) are co-initial vectors.
(iii) Two or more vectors are said to be collinear iff they have same or parallel supports, irrespective of their magnitude and directions.
Clearly \(\vec{a} \text { and } \vec{c}\) are collinear but not equal vectors
while \(\vec{b} \text { and } \vec{d}\) are collinear and equal vectors.

Question 3.
State whether the following are true or false:
(i) Vectors \(\vec{a} \text { and }-\vec{a}\) a are collinear. (NCERT)
(ii) Two collinear vectors are always equal in magnitude. (NCERT)
(iii) Two vectors having same magnitude are collinear. (NCERT)
(iv) Two collinear vectors having same magnitude are equal. (NCERT)
(v) Zero vector is unique.
(vi) Modulus of vectors \(3 \vec{a} \text { and }-3 \vec{a}\) is same.
(vii) Resultant of \(\vec{a} \text { and }-\vec{a}\) is a proper vector.
(viii) Two equal and co-initial vectors must coincide.
(ix) (m + n) (\((\vec{a}+\vec{b})\)) = \(m \vec{a}+m \vec{b}+n \vec{a}+n \vec{b}\)
(x) (m n) \((\vec{a}+\vec{b})=m \vec{a}+n \vec{b}\)
(xi) \(\vec{a}=-\vec{b}\)
⇒ \(|\vec{a}|=|\vec{b}|\)
(xii) \(\vec{a}=\vec{b} \Rightarrow|\vec{a}|=|\vec{b}|\)
(xiii) \(|\vec{a}|=|\vec{b}| \Rightarrow \vec{a}=\vec{b}\)
(xiv) If \(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}=\overrightarrow{0}\), then points O and C coincide.
Solution:
(i) True, since both vectors lies on a same line

(ii) False, since two or more vectors are said to be collinear iff they have same or || supports irrespective of their magnitudes and directions.

(iii) False, Since both vectors may have different supports.

(iv) False, Since both vectors may have different directions.

(v) False, \(\overrightarrow{\mathrm{AA}}, \overrightarrow{\mathrm{BB}}\) etc. are all coinitial vectors.

(vi) True, \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{BA}}\) are of same length i.e. \(|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{BA}}|\)

(vii) False, since the resultant of \(\vec{a} \text { and }-\vec{a}\) is a zero vector.

(viii) True, Since coinitial vectors and equal vectors are of same magnitude.

(ix) True

(x) False, (m n) \((\vec{a}+\vec{b})=m n \vec{a}+m n \vec{b}\)

(xi) True, \(\vec{a}=-\vec{b}\)
⇒ \(|\vec{a}|=|-\vec{b}|=|\vec{b}|\)

(xii) True, \(\vec{a}=\vec{b}\)
⇒ \(|\vec{a}|=|\vec{b}|\)

(xiii) False,
⇒ \(\vec{a}=3 \hat{i}+4 \hat{j}\) ;
\(\vec{b}=4 i+3 \hat{j}\)
\(|\vec{a}|=|\vec{b}|=\sqrt{3^2+4^2}\) = 5 but \(\vec{a} \neq \vec{b}\)

(xiv) True, \(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{0}\)
⇒ \(\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{0}\) [using ∆ law of vectors]
⇒ \(\overrightarrow{\mathrm{OC}}=\overrightarrow{0}\)
∴ \(\overrightarrow{\mathrm{O}} \text { and } \overrightarrow{\mathrm{C}}\) are coincide i.e. O and C are coincide.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 4.
If \(\vec{a} \text { and } \vec{b}\) are collinear, then state whether the following statements are true or false :
(i) b = λ . \(\vec{a}\) for some scalar.
(ii) \(\vec{a}= \pm \vec{b}\)
(iii) the respective components of \(\vec{a} \text { and } \vec{b}\) are proportional.
(iv) both the vectors \(\vec{a} \text { and } \vec{b}\) have same direction, but different magnitude.
Solution:
Since we know that, two or more vectors are collinear
iff they have same or parallel supports irrespective of their magnitudes and directions.

(i) True, since \(\vec{a} \text { and } \vec{b}\) are scalar multiple of each other.
∴ \(\vec{a}=\lambda \vec{b}\)
and \(\vec{b}=\mu \vec{a}\)
for some scalars λ and μ.

(ii) false, since \(\vec{a} \text { and } \vec{b}\) are collinear
∴ \(\vec{a}=\lambda \vec{b}\) for some scalar λ
∴ \(\vec{a} \neq \pm \vec{b}\) for λ ≠ ± 1

(iii) True, Let \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\)
and \(\vec{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\)
Since \(\vec{a}=\lambda \vec{b}\) for some scalar λ.
∴ \(\left(a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\right)=\lambda\left(b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}\right)\)
⇒ a1 = λ b1 ;
a2 = λ b2 ;
a3 = λ b3
Thus their components are proportional

(iv) False, Since \(\vec{a}=\lambda \vec{b}\) for some scalar λ.
Since \(\vec{a}=-2 \vec{b}\) for λ = – 2,
Here \(\vec{a} \text { and } \vec{b}\) are of opposite direction but \(\vec{a} \text { and } \vec{b}\) are collinear.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 5.
(i) If k \(\vec{a}=\overrightarrow{0}\), then what can you say about k and \(\vec{a}\) ?
(ii) If \(\vec{a}\) is a non-zero vector, then find a scalar k such that |k \(\vec{a}\)| = 1.
Solution:
(i) k \(\vec{a}\) = \(\overrightarrow{0}\)
⇒ k = 0 or \(\vec{a}=\overrightarrow{0}\)
or k and \(\vec{a}\) both are \(\overrightarrow{0}\).

(ii)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 5

Question 5 (old).
In a triangle ABC (shown in the adjoining figure), state whether the following are true or false :
(i) \(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}\)
(ii) \(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{A C}}=\overrightarrow{0}\)
(iii) \(\overrightarrow{\mathbf{A B}}-\overrightarrow{\mathbf{C B}}+\overrightarrow{\mathbf{C A}}=\overrightarrow{0}\)
(iv) \(\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B C}}-\overrightarrow{\mathbf{C A}}=\overrightarrow{0}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 3

Solution:
(i) By ∆ law of addition of vectors
\(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}\)
⇒ \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}\) ……………..(1)
⇒ \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}\)
∴ given statement is true.

(ii) From eqn. (1) ; given result is true.

(iii) True, Since \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}\)
⇒ \(\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}\)
[∵ \(\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CB}}\)]

(iv) False, since \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 6.
If \(|\vec{a}|\) = 5, then calculate
(i) |2 \(\vec{a}\)|
(ii) \(\left|-\frac{1}{2} \vec{a}\right|\)
(iii) \(-\frac{1}{2}|\vec{a}|\)
Solution:
Given \(|\vec{a}|\) = 5
(i) \(|2 \vec{a}|\) = |2| \(|\vec{a}|\)
= 2 × 5 = 10

(ii) \(\left|-\frac{1}{2} \vec{a}\right|=\left|-\frac{1}{2}\right||\vec{a}|\)
= \(\frac{1}{2}\) × 5
= \(\frac{5}{2}\)

(iii) \(-\frac{1}{2}|\vec{a}|\)
= – \(\frac{1}{2}\) × 5
= – \(\frac{5}{2}\)

Question 7.
(i) For what value of p, is \((\hat{i}+\hat{j}+\hat{k})\) p a unit vector.
(ii) If \(\vec{a}=-3 \hat{i}-2 \hat{j}+6 \hat{k}\), then find the value of λ so that λ \(\vec{a}\) may be a unit vector.
Solution:
(i) Let \(\vec{a}\) = p \((\hat{i}+\hat{j}+\hat{k})\)
= \(p \hat{i}+p \hat{j}+p \hat{k}\)
Since \(\vec{a}\) be a unit vector.
∴ \(|\vec{a}|\) = 1
⇒ \(\sqrt{p^2+p^2+p^2}\) = 1
⇒ \(\sqrt{3 p^2}\) = 1
⇒ √3 p = 1
⇒ √3 |p| = 1
⇒ |p| = \(\frac{1}{\sqrt{3}}\)
⇒ p = ± \(\frac{1}{\sqrt{3}}\)

(ii) Given \(\vec{a}=-3 \hat{i}-2 \hat{j}+6 \hat{k}\)
Since λ \(\vec{a}\) is a unit vector

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 6

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 8.
(i) Find values of x and y so that the vectors \(2 \hat{i}+3 \hat{j} \text { and } x \hat{i}+y \hat{j}\) are equal. (NCERT)
(ii) Find the values of x, y and z so that the vectors \(\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}\) and \(\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}\) are equal. (NCERT)
(iii) If \(\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}\) and \(\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}\) are two equal vectors, then write the value of x + y + z.
(iv) If \(\vec{a}=x \hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{b}=3 \hat{i}-y \hat{j}+z \hat{k}\), then find the values of x, y and z so that \(2 \vec{a}=3 \vec{b}\).
Solution:
(i) Let \(\vec{a}=2 \hat{i}+3 \hat{j}\)
and \(\vec{b}=x \hat{i}+y \hat{j}\)
Since \(\vec{a} \text { and } \vec{b}\) are equal.
∴ \(\vec{a}=\vec{b}\)
⇒ \(2 \hat{i}+3 \hat{j}=x \hat{i}+y \hat{j}\)
⇒ x = 2 and y = 3.
[on comparing the coefficients of i and j on both sides]

(ii) Since \(\vec{a}=\vec{b}\)
⇒ \(x \hat{i}+2 \hat{j}+z \hat{k}=2 \hat{i}+y \hat{j}+\hat{k}\)
on comparing the coefficients of \(\hat{i}, \hat{j} \text { and } \hat{k}\) on both sides; we have
x = 2 ; y = 2 ; z = 1

(iii) Given \(\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}\)
and \(\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}\)
Now \(\vec{a}=\vec{b}\)
⇒ \(x \hat{i}+2 \hat{j}-z \hat{k}=3 \hat{i}-y \hat{j}+\hat{k}\)
∴ x = 3 ; y = – 2 and z = – 1.
Thus x + y + z = 3 – 2 – 1 = 0

(iv) Given \(\vec{a}=x \hat{i}+2 \hat{j}-3 \hat{k}\)
and \(\vec{b}=3 \hat{i}-y \hat{j}+z \hat{k}\)
Since \(2 \vec{a}=3 \vec{b}\)
⇒ \(2(x \hat{i}+2 \hat{j}-3 \hat{k})=3(3 \hat{i}-y \hat{j}+z \hat{k})\)
⇒ \(2 x \hat{i}+4 \hat{j}-6 \hat{k}=9 \hat{i}-3 y \hat{j}+3 z \hat{k}\)
[since two vectors are equal iff their corresponding components are equal]
2x = 9 ;
4 = – 3y
and – 6 = 3z
⇒ x = \(\frac{9}{2}\) ;
y = – \(\frac{4}{3}\)
and z = – 2

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 9.
(i) Let \(\vec{a}=\hat{i}+2 \hat{j}\) and \(\vec{b}=2 \hat{i}+\hat{j}\). Is \(|\vec{a}|=|\vec{b}|\) ? Are the vectors \(\vec{a} \text { and } \vec{b}\) equal ? (NCERT)
(ii) Write two different vectors having same magnitude. (NCERT)
(iii) Write two different vectors having same direction. (NCERT)
(iv) If \(|\vec{a}|=|\vec{b}|\), is it true that \(\vec{a}= \pm \vec{b}\) ? Justify your answer.
Solution:
(i) Given \(\vec{a}=\hat{i}+2 \hat{j}\)
and \(\vec{b}=2 \hat{i}+\hat{j}\)
Here \(|\vec{a}|=\sqrt{1^2+2^2}=\sqrt{5}\)
and \(|\vec{b}|=\sqrt{2^2+1^2}=\sqrt{5}\)
∴ \(|\vec{a}|=|\vec{b}|\)
Clearly \(\vec{a} \text { and } \vec{b}\) are not equal.

(ii) Let \(\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}\) ;
\(|\vec{a}|=\sqrt{2^2+(-1)^2+2^2}\) = 3
& \(\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}\) ;
\(|\vec{b}|=\sqrt{(-2)^2+1^2+(-2)^2}=\sqrt{9}\) = 3

(iii) \(\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}\)
& \(\vec{b}=4 \hat{i}+2 \hat{j}+4 \hat{k}\)
Clearly \(\vec{b}=2 \vec{a}\)
i. e. \(\vec{b} \text { and } \vec{a}\) have same direction.
Since both \(\vec{a} \text { and } \vec{b}\) are parallel vectors.

(iv) Let \(\vec{a}=3 \hat{i}+4 \hat{j}\)
⇒ \(|\vec{a}|=\sqrt{3^2+4^2}\) = 5
and \(\vec{b}=4 \hat{i}+3 \hat{j}\)
⇒ \(|\vec{b}|=\sqrt{4^2+3^2}\) = 5
∴ \(|\vec{a}|=|\vec{b}|\)
but \(\vec{a} \neq \vec{b}\) and \(\vec{a} \neq-\vec{b}\)

Question 10.
If a unit vector \(\vec{a}\) makes angles \(\frac{\pi}{3}\) with \(\hat{i}, \frac{\pi}{4} \text { with } \hat{j}\) and an acute angle θ with \(\hat{k}\), then find the value of θ.
Solution:

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 7

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 11.
Find the magnitude of the following vectors :
(i) \(\hat{i}+\hat{j}+\hat{k}\)
(ii) \(2 \hat{i}-3 \hat{j}-7 \hat{k}\)
(iii) \(\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}\) (NCERT)
Solution:
(i) Let \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\)
∴ \(|\vec{a}|=\sqrt{1^2+1^2+1^2}\)
= \(\sqrt{1+1+1}=\sqrt{3}\)

(ii) Let \(\vec{a}=2 \hat{i}-3 \hat{j}-7 \hat{k}\)
∴ \(|\vec{a}|=|2 \hat{i}-3 \hat{j}-7 \hat{k}|\)
= \(\sqrt{2^2+(-3)^2+(-7)^2}\)
= \(\sqrt{4+9+49}=\sqrt{62}\)

(iii) Let \(\vec{a}=\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}\)
∴ \(|\vec{a}|=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^2+\left(-\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2}\)
= \(\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}\)
= \(\sqrt{\frac{3}{3}}=\sqrt{1}\) = 1

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 12.
(i) Find the vector with initial point P (2, 3, 0) and terminal point Q (- 1, – 2, – 4). Also find its magnitude. (NCERT)
(ii) Write the scalar components of the vector \(\overrightarrow{\mathrm{AB}}\) with initial point A (2, 1) and terminal point B (- 5, 7).
(iii) Find the terminal point of the vector PQ whose initial point is P (- 2, 5, 0) and components along coordinate axes are 2, – 3 and 7 respectively.
Solution:
(i)ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 8

(ii) P.V of A = \(2 \hat{i}+\hat{j}\)
P.V of B = \(-5 \hat{i}+7 \hat{j}\)
∴ \(\overrightarrow{\mathrm{AB}}\) = P.V. of B – P.V. of A
= \(-5 \hat{i}+7 \hat{j}-(2 \hat{i}+\hat{j})\)
⇒ \(\overrightarrow{\mathrm{AB}}=-7 \hat{i}+6 \hat{j}\)
∴ Scalar components of vector \(\overrightarrow{\mathrm{AB}}\) are – 7 and 6.

(iii) Given, P.V of initial point P = \(-2 \hat{i}+5 \hat{j}+0 \hat{k}\)
Let Q be the terminal point of \(\overrightarrow{\mathrm{PQ}}\) with P.V \(\vec{b}\).
Since \(\overrightarrow{\mathrm{PQ}}\) is having components along coordinate axes are 2, – 3 and 7.
Thus, \(\overrightarrow{\mathrm{PQ}}\)
⇒ P.V of Q – P.V of P = \(2 \hat{i}-3 \hat{j}+7 \hat{k}\)
⇒ \(\vec{b}-(-2 \hat{i}+5 \hat{j}+0 \hat{k})=2 \hat{i}-3 \hat{j}+7 \hat{k}\)
⇒ \(\vec{b}=(2 \hat{i}-3 \hat{j}+7 \hat{k})+(-2 \hat{i}+5 \hat{j}+0 \hat{k})\)
⇒ \(\vec{b}=0 \hat{i}+2 \hat{j}+7 \hat{k}\)
Hence the terminal point of \(\overrightarrow{\mathrm{PQ}}\) be Q(0, 2, 7).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 13.
(i) Find the sum of the vectors \(\vec{a}=\hat{i}-2 \hat{j}+\hat{k}\), \(\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}\).
(ii) If \(\vec{a}, \vec{b}, \vec{c}\) have components (1, – 1), (2, – 2) and (2, 1) respectively, find \(2 \vec{a}-\vec{b}+3 \vec{c}\).
Solution:
(i) Given \(\vec{a}=\hat{i}-2 \hat{j}+\hat{k}\),
\(\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}\)
and \(\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}\)
∴ \(\vec{a}+\vec{b}+\vec{c}\) = \((1-2+1) \hat{i}+(-2+4-6) \hat{j}+(1+5-7) \hat{k}\)
= \(0 \hat{i}-4 \hat{j}-\hat{k}\)

(ii) Since \(\vec{a}, \vec{b} \text { and } \vec{c}\) have components (1, – 1), (2, – 2) and (2, 1).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 9

Question 14.
Find a unit vector in the direction of the vector \(\vec{a}=2 \hat{i}-3 \hat{j}\).
(ii) Find a unit vector in the direction of the vector \(\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}\).
(iii) Find a unit vector in the direction of the vector \(\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}\).
Solution:
(î) required unit vector in the direction of \(\vec{a}=2 \hat{i}-3 \hat{j}\)
= \(\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{2 \hat{i}-3 \hat{j}}{|2 \hat{i}-3 \hat{j}|}=\frac{2 \hat{i}-3 \hat{j}}{\sqrt{2^2+(-3)^2}}\)
= \(\frac{2}{\sqrt{13}} \hat{i}-\frac{3}{\sqrt{13}} \hat{j}\)

(ii) Given \(\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}\)
∴ \(|\vec{b}|=\sqrt{2^2+1^2+2^2}\) = 3
Thus required unit vector in the direction of \(\vec{b}\)
\(\hat{b}=\frac{\vec{b}}{|\vec{b}|}\)
= \(\frac{2 \hat{i}+\hat{j}+2 \hat{k}}{3}\)
= \(\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}+\frac{2}{3} \hat{k}\)

(iii) Given \(\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}\)
∴ \(|\vec{a}|=\sqrt{3^2+(-2)^2+6^2}=\sqrt{49}\) = 7
Thus required unit vector in the direction of \(\vec{a}\)
= \(\hat{a}=\frac{\vec{a}}{|\vec{a}|}\)
= \(\frac{3 \hat{i}-2 \hat{j}+6 \hat{k}}{7}\)
= \(\frac{3}{7} \hat{i}-\frac{2}{7} \hat{j}+\frac{6}{7} \hat{k}\)

Question 15.
(i) Find a unit vector in the direction of \(\) where P and Q have coordinates (5, 0, 8) and (3, 3, 2) respectively. (NCERT Exemplar)
(ii) Find the unit vector in the direction of AB where A and B are the points (1, 2, 3) and (4, 5, 6) respectively. (NCERT)
Solution:
(i) Here \(\overrightarrow{\mathrm{PQ}}\) = P.V of Q – P.V of P
= \((3 \hat{i}+3 \hat{j}+2 \hat{k})-(5 \hat{i}+0 \hat{j}+8 \hat{k})\)
= \(-2 \hat{i}+3 \hat{j}-6 \hat{k}\)
∴ required unit vector in the direction of \(\overrightarrow{\mathrm{PQ}}=\hat{\mathrm{PQ}}\)
= \(\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}\)
= \(\frac{-2 \hat{i}+3 \hat{j}-6 \hat{k}}{\sqrt{(-2)^2+3^2+(-6)^2}}\)
= \(\frac{-2 \hat{i}+3 \hat{j}-6 \hat{k}}{\sqrt{4+9+36}}\)
= \(-\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}\)

(ii) \(\overrightarrow{\mathrm{OA}}\) = P.V. of A
= \(\hat{i}+2 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathrm{OB}}\) = P.V. of B
= \((4 \hat{i}+5 \hat{j}+6 \hat{k})\)
∴ \(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}\) = P.V. of B – P.V. of A
= \((4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})\)
= \(3 \hat{i}+3 \hat{j}+3 \hat{k}\)
∴ \(\hat{\mathrm{AB}}=\frac{\overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{AB}}|}=\frac{3(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3^2+3^2+3^2}}\)
= \(\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 16.
(i) Write a unit vector in the direction of sum of vectors \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}\).
(ii) If \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}\), find the unit vector in the direction of \(2 \vec{a}-\vec{b}\).
Solution:
(i) Given \(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\)
and \(\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 10

(ii) Given \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k}\)
and \(\vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 11

Question 17.
(i) Find a unit vector parallel to te sum of vectors \(\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}\) and \(\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\). (NCERT)
(ii) If \(\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{b}=2 \hat{i}+4 \hat{j}+9 \hat{k}\), then find a unit vector parallel to \(\vec{a}+\vec{b}\).
Solution:
(i) Given \(\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}\)
and \(\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 13

(ii) Given \(\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}\)
and \(\vec{b}=2 \hat{i}+4 \hat{j}+9 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 14

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 18.
(i) Find a vector in the direction of the vector \(\vec{a}=\hat{i}-2 \hat{j}\), whose magnitude is 7 units.
(ii) Write a vector of magnitude 9 units in the direction of the vector \(-2 \hat{i}+\hat{j}+2 \hat{k}\).
(iii) Find vectors of magnitude 5 units which are parallel to the sum of vectors \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\vec{b}=\hat{i}-2 \hat{j}+\hat{k}\).
Solution:
(i) Given \(\vec{a}=\hat{i}-2 \hat{j}\)
∴ required vector in the direction of \(\vec{a}\) having magnitude 7 units.
= \(7 \hat{a}=\frac{7 \vec{a}}{|\vec{a}|}\)
= \(\frac{7(\hat{i}-2 \hat{j})}{\sqrt{1^2+(-2)^2}}\)
= \(\frac{7}{\sqrt{5}}(\hat{i}-2 \hat{j})\)

(ii) We required a vector of magnitude 9 which is in the direction of \(\vec{a}=-2 \hat{i}+\hat{j}+2 \hat{k}\)
i.e. required vector = \(\frac{9 \vec{a}}{|\vec{a}|}\)
= \(\frac{9(-2 \hat{i}+\hat{j}+2 \hat{k})}{\sqrt{(-2)^2+1^2+2^2}}\)
= \(3(-2 \hat{i}+\hat{j}+2 \hat{k})\)

(iii) Given \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}\) ;
and \(\vec{b}=\hat{i}-2 \hat{j}+\hat{k}\)
∴ \(\vec{a}+\vec{b}=3 \hat{i}+\hat{j}+0 \hat{k}\)
\(|\vec{a}+\vec{b}|=\sqrt{3^2+1^2+0^2}=\sqrt{10}\)
Thus, required unit vector of magnitude 5
= \(\frac{ \pm 5(\vec{a}+\vec{b})}{|(\vec{a}+\vec{b})|}\)
= \(\frac{ \pm 5(3 \hat{i}+\hat{j})}{\sqrt{10}}\)

Question 18 (old).
(i) If \(\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}\) and \(\vec{b}=-\hat{i}+\hat{j}-\hat{k}\), then find the unit vector in the direction of the vector \(\vec{a}+\vec{b}\). (NCERT)
(ii) If \(\vec{a}=\hat{i}+\hat{j}\), \(\vec{b}=\hat{j}+\hat{k}\) and \(\vec{c}=\hat{k}+\hat{i}\) then find a unit vector in the direction of \(\vec{a}+\vec{b}+\vec{c}\).
Solution:
(i) Given \(\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}\)
and \(\vec{b}=-\hat{i}+\hat{j}-\hat{k}\)
∴ \(\vec{a}+\vec{b}=(2 \hat{i}-\hat{j}+2 \hat{k})+(-\hat{i}+\hat{j}-\hat{k})\)
= \(\hat{i}+0 \hat{j}+\hat{k}\)
⇒ \(\vec{c}=\vec{a}+\vec{b}\)
= \(\hat{i}+0 \hat{j}+\hat{k}\)
Thus unit vector in the direction \(\vec{a}+\vec{b}\)
∴ \(\hat{c}=\frac{\vec{c}}{|\vec{c}|}\)
= \(\frac{\hat{i}+0 \hat{j}+\hat{k}}{\sqrt{1^2+1^2}}\)
= \(\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})\)

(iv) Given \(\vec{a}=\hat{i}+\hat{j}\) ;
\(\vec{b}=\hat{j}+\hat{k}\) ;
and \(\vec{c}=\hat{k}+\hat{i}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 12

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 19.
(i) If the magnitude of the position vector of the point (3, – 2, α) is 7 units, then find all possible values of α.
(ii) What vector should be added to the vector \(\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}\) so that the resultant is a unit vector \(\hat{i}\)?
Solution:
(i) Let \(\vec{a}\) be the position vector of point (3, – 2, α)
∴ \(\vec{a}=3 \hat{i}-2 \hat{j}+\alpha \hat{k}\) also given \(|\vec{a}|\) = 7
⇒ \(\sqrt{3^2+(-2)^2+\alpha^2}\) = 7
⇒ \(\sqrt{9+4+\alpha^2}\) = 7
⇒ \(\sqrt{13+\alpha^2}\) = 7
Oh squaring; we have
13 + α2 = 49
⇒ α2 = 49 – 13 = 36
⇒ α = ± 6

(ii) Given \(\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}\)
Let the required vector be \(\vec{b}\) so that
\(\vec{a}+\vec{b}=\hat{i}\)
⇒ \(\vec{b}=\hat{i}-\vec{a}\)
= \(\hat{i}-(3 \hat{i}+4 \hat{j}-2 \hat{k})\)
⇒ \(\vec{b}=-2 \hat{i}-4 \hat{j}+2 \hat{k}\)

Question 20.
(i) Show that the vectors \(2 \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-4 \hat{i}+6 \hat{j}-8 \hat{k}\) are collinear.
(ii) Write the value of p for which \(\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}\) and \(\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}\) are parallel vectors.
(iii) If \(\vec{a}=p \hat{i}+3 \hat{j}\) and \(\vec{b}=4 \hat{i}+p \hat{j}\), then find the values of p so that \(\vec{a} \text { and } \vec{b}\) may be parallel.
Solution:
(i) Let O be the origin and A, B be the points whose position vectors are

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 15

Thus \(\overrightarrow{\mathrm{OA}} \text { and } \overrightarrow{\mathrm{OB}}\) vectors are parallel vectors and the origin O is common to them.
Thus \(\overrightarrow{\mathrm{OA}} \& \overrightarrow{\mathrm{OB}}\) vectors are collinear,
Therefore A, B are collinear vectors.

(ii) Given \(\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}\)
\(\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}\) are parallel vectors
∴ \(\vec{a}=\lambda \vec{b}\) for some non-zero scalar λ.
⇒ \(3 \hat{i}+2 \hat{j}+9 \hat{k}=\lambda(\hat{i}+p \hat{j}+3 \hat{k})\)
∴ 3 = λ ;
2 = λ p
and 9 = 3λ
Thus, 2 = 3p
⇒ p = \(\frac{2}{3}\)

(iii) Given \(\vec{a}=p \hat{i}+3 \hat{j}\)
and \(\vec{b}=4 \hat{i}+p \hat{j}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 16

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 20 (old).
(iii) Find the vector in the direction of the vector \(\vec{r}=5 \hat{i}-\hat{j}+2 \hat{k}\) which has magnitude 8 units.
(iv) Find vectors of magnitude 5 units which are parallel to the vector \(3 \hat{i}+\hat{j}\).
Solution:
(iii) Let \(\vec{a}=5 \hat{i}-\hat{j}+2 \hat{k}\),
Let < l, m, n > be the direction cosines of \(\vec{a}\)
The direction ratios of \(\vec{a}\) are proportional to < 5, – 1, 2 >
∴ direction cosines of \(\vec{a}\) are \(\left\langle\frac{5}{\sqrt{5^2+(-1)^2+2^2}}, \frac{-1}{\sqrt{5^2+(-1)^2+2^2}}, \frac{2}{\sqrt{5^2+(-1)^2+2^2}}\right\rangle\)
i.e. \(\left\langle\frac{5}{\sqrt{30}}, \frac{-1}{\sqrt{30}}, \frac{2}{\sqrt{30}}\right\rangle\)
required vector = 8 \((\ell \hat{i}+m \hat{j}+n \hat{k})\)
= 8 \(\left(\frac{5}{\sqrt{30}} \hat{i}-\frac{1}{\sqrt{30}} \hat{j}+\frac{2}{\sqrt{30}} \hat{k}\right)\)
= \(\frac{8}{\sqrt{30}}(5 \hat{i}-\hat{j}+2 \hat{k})\)

(iv) Given \(\vec{a}=3 \hat{i}+\hat{j}\)
So a unit vector parallel to \(\vec{a}= \pm \hat{a}\)
= \(\pm \frac{\vec{a}}{|\vec{a}|}\)
= \(\pm \frac{(3 \hat{i}+\hat{j})}{\sqrt{3^2+1}}\)
= \(\pm \frac{(3 \hat{i}+\hat{j})}{\sqrt{10}}\)
required vector = \(5 \hat{a}= \pm \frac{5}{\sqrt{10}}(3 \hat{i}+\hat{j})\)

Question 21.
(i) Write the direction ratios of the vector \(\hat{i}+\hat{j}-2 \hat{k}\), and hence calculate its direction cosines.
(ii) Find the direction cosines of the vector joining the points A (1, 2, – 3) and B (- 1, 2, 1), directed from A to B.
Solution:
(i) Let \(\vec{a}=\hat{i}+\hat{j}-2 \hat{k}\)
∴ D ratios of \(\vec{a}\) be < 1, 1, – 2 >
Thus, D’ cosines of \(\vec{a}\) are
< \(\frac{1}{\sqrt{1^2+1^2+(-2)^2}}, \frac{1}{\sqrt{1^2+1^2+(-2)^2}}, \frac{-2}{\sqrt{1^2+1^2+(-2)^2}}\) >
i.e., < \(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\) >

(ii) direction ratios of vector \(\overrightarrow{\mathrm{AB}}\) are ;
< – 1 – 1 , – 2 – 2, 1 + 3 >
i.e., < – 2, – 4, 4 >
i.e., < – 1 , – 2, 2 >
Thus direction cosines of vector \(\overrightarrow{\mathrm{AB}}\) are ;
< \(\frac{-1}{\sqrt{(-1)^2+(-2)^2+2^2}}, \frac{-2}{\sqrt{(-1)^2+(-2)^2+2^2}}, \frac{2}{\sqrt{(-1)^2+(-2)^2+2^2}}\) >
i.e., < \(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\) >

Question 22.
(i) Find the mid – point of the vector joining the points P and Q having position vectors \(2 \hat{i}+3 \hat{j}-4 \hat{k}\) and \(4 \hat{i}+\hat{j}-2 \hat{k}\) respectively.
(ii) The position vector of the mid-point M of the line segment AB is \(3 \hat{i}+4 \hat{k}\). If the position vector of the point A is \(4 \hat{i}-2 \hat{j}+3 \hat{k}\), find the position vector of B.
Solution:
(i) Given P.V. of P = \(2 \hat{i}+3 \hat{j}-4 \hat{k}\)
and P.V. of Q = \(4 \hat{i}+\hat{j}-2 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 17

∴ P.V. of mid-point of line joining P and Q = \(\frac{(2 \hat{i}+3 \hat{j}-4 \hat{k})+(4 \hat{i}+\hat{j}-2 \hat{k})}{2}\)
= \(\frac{6 \hat{i}+4 \hat{j}-6 \hat{k}}{2}\)
= \(3 \hat{i}+2 \hat{j}-3 \hat{k}\)

(ii) Let P.V. of B = \(\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}\)
given P.V. of A = \(4 \hat{i}-2 \hat{j}+3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 18

Question 22 (old).
(ii) Write the position vector of the point dividing the line segment joining the points with position vector \(\vec{a} \text { and } \vec{b}\) externally in the ratio 1 : 4, where \(\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(\vec{b}=-\hat{i}+\hat{j}+\hat{k}\)
Solution:
Given \(\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}\)
and \(\vec{b}=-\hat{i}+\hat{j}+\hat{k}\)
∴ \(\vec{a}=\lambda \vec{b}\)
⇒ \(3 \hat{i}+2 \hat{j}+9 \hat{k}=\lambda(\hat{i}+p \hat{j}+3 \hat{k})\)
∴ 3 = λ ;
2 = λ p
and 9 = 3λ
Thus, 2 = 3p
⇒ p = \(\frac{2}{3}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 23 (old).
(ii) Find the direction cosines of the vector \(\hat{i}+2 \hat{j}+3 \hat{k}\). (NCERT)
(iii) If P (1, 5, 4) and Q (4, 1, – 2), then find the direction ratios of \(\overrightarrow{\mathrm{PQ}}\).
Solution:
(ii) Let \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\)
∴ direction ratio of are proportional to < 1, 2, 3 >
Thus, direction cosines of \(\vec{a}\) are ;
\(\left\langle\frac{1}{\sqrt{1^2+2^2+3^2}}, \frac{2}{\sqrt{1^2+2^2+3^2}}, \frac{3}{\sqrt{1^2+2^2+3^2}}\right\rangle\)
i.e., \(\left\langle\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right\rangle\)

(iii) We know that,
If P (x1, y1, z1) and Q (x2, y2, z2)
Then D’ ratios of \(\overrightarrow{\mathrm{PQ}}\) are
< x2 – x1, y2 – y1, z2 – z1 >
∴ D’ ratios of \(\overrightarrow{\mathrm{PQ}}\) are < 4 – 1, 1 – 5, – 2 – 4 >
i.e., < 3, – 4, – 6 >
Thus, D’ cosines of \(\overrightarrow{\mathrm{PQ}}\) are
< \(\frac{3}{\sqrt{3^2+(-4)^2+(-6)^2}}, \frac{-4}{\sqrt{3^2+(-4)^2+(-6)^2}}, \frac{-6}{\sqrt{3^2+(-4)^2+(-6)^2}}\) >
i.e., < \(\frac{3}{\sqrt{9+16+36}}, \frac{-4}{\sqrt{9+16+36}}, \frac{-6}{\sqrt{9+16+36}}\) >
i.e., < \(\frac{3}{\sqrt{61}}, \frac{-4}{61}, \frac{-6}{61}\) >

Question 23.
If the position vectors of theverticesA, B and C of a ∆ABC are \(\hat{i}+2 \hat{j}-3 \hat{k}\), \(-2 \hat{i}-5 \hat{j}+4 \hat{k}\) and \(7 \hat{i}-4 \hat{k}\) respectively, then write the position vector of the centrold of ∆ABC.
Solution:
Let \(\vec{a}, \vec{b}, \vec{c}\) be the position vectors of the vertices A, B and C of ∆ABC.
Then, \(\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k\)k ;
\(\vec{b}=-2 \hat{i}-5 \hat{j}+4 \hat{k\)
and \(\vec{c}=7 \hat{i}-4 \hat{k}\)
Thus the P.V of centroid of ∆ABC are \(\left(\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)\)
= \(\frac{(\hat{i}+2 \hat{j}-3 \hat{k})+(-2 \hat{i}-5 \hat{j}+4 \hat{k})+(7 \hat{i}-4 \hat{k})}{3}\)
= \(\frac{6 \hat{i}-3 \hat{j}-3 \hat{k}}{3}\)
= \(2 \hat{i}-\hat{j}-\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 24.
Find the position vector of a point R which divides the line segment joining the points P and Q with position vectors \(\) and \(\) respectively in the ratio 2 : 1
(i) internally
(ii) externally. (NCERT)
Solution:
(i) P.V. of point R
= \(\frac{2(-\hat{i}+\hat{j}+\hat{k})+1(\hat{i}+2 \hat{j}-\hat{k})}{2+1}\)
= \(\frac{(-2+1) \hat{i}+(2+2) \hat{j}+(2-1) \hat{k}}{2+1}\)
= \(-\frac{\hat{i}}{3}+\frac{4}{3} \hat{j}+\frac{1}{3} \hat{k}\)

(ii) P.V. of poiont R = \(\frac{2(-\hat{i}+\hat{j}+\hat{k})-1(\hat{i}+2 \hat{j}-\hat{k})}{2-1}\)
= \((-2-1) \hat{i}+(2-2) \hat{j}+(2+1) \hat{k}\)
= \(-3 \hat{i}+3 \hat{k}\)

Question 25.
(i) Find the position vector of the point which divides the join of the points with position vectors \(\vec{a}+3 \vec{b}\) and \(\vec{a}-\vec{b}\) internally in the ratio 1 : 3.
(ii) X and Y are two points with position vectors \(3 \vec{a}+\vec{b}\) and \(\vec{a}-3 \vec{b}\) respectively. Write the position vector of a point Z which divides the line segment XY in the ratio 2 : 1 externally.
Solution:
(i) Then by using section formula, P.V. of point which divides the line segment AB internally in the ratio 1 : 3

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 19

(ii) Thus by section formula.
The P.V of point which divides the line segment AB externally in the ratio 2: 1 i.e. 2 : – 1 internally

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 20

Question 26.
The vectors a and b are non-zero non-collinear. For what value of x, the vectors (x – 2) \(\) and (2x + 1) \(\) are collinear?
Solution:
Let \(\vec{c}=(x-2) \vec{a}+\vec{b}\)
and \(\vec{d}=(2 x+1) \vec{a}-\vec{b}\)
Since \(\vec{c}=\lambda \vec{d}\) are collinear.
∴ \(\vec{c} \text { and } \vec{d}\)
for some non-zero scalar λ.
⇒ (x – 2) \(\vec{a}+\vec{b}\) = λ [(2x + 1) \(\vec{a}-\vec{b}\)]
Since \(\vec{a} \text { and } \vec{b}\) are non-zero non-collinear vectors.
∴ x – 2 = λ (2x + 1).
and 1 = – λ
⇒ λ = – 1
∴ from (1) ;
x – 2 = λ (2x + 1)
⇒ x – 2 = – 2x – 1
⇒ 3x = 1
⇒ x = \(\frac{1}{3}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 27.
The position vectors of four points A, B, C, D are \(\vec{a}, \vec{b}, 2 \vec{a}+3 \vec{b}, 2 \vec{a}-3 \vec{b}\) respectively. Express the vectors \(\overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{B D}}, \overrightarrow{\mathbf{C D}}, \overrightarrow{\mathbf{A B}}\) in terms of \(\vec{a} \text { and } \vec{b}\).
Solution:

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 22

Question 27 (old) .
(i) A and B are two points with position vectors \(2 \vec{a}-3 \vec{b}\) and \(6 \vec{b}-\vec{a}\) respectively. Write the position vector of a point P which divides the line segment AB internally in the ratio 1 : 2.
(ii) P and Q are points with position vectors \(3 \vec{a}-2 \vec{b}\) and \(\vec{a}+\vec{b}\) respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2: 1 externally.
Solution:
(i) required P.V of a point P which divides AB internally in the ratio 1 : 2 is given by

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 21

(ii) The P.V R of point which divides the line segment externally in the ratio 2 : 1.
i.e. internally 2 : – 1
\(\overrightarrow{\mathrm{R}}=\frac{2(\vec{a}+\vec{b})-(3 \vec{a}-2 \vec{b})}{2-1}\)
= \(-\vec{a}+4 \vec{b}\)

Question 28.
(i) If the points A, B, C and D have coordinates (0, 1), (1, 0), (1, 2) and (2, 1) respectively, then prove that \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CD}}\).
(ii) If the coordinates of the points A and B in a plane are (1, 1) and (2, 2) respectively, then find the coordinates of point C such that \(\overrightarrow{\mathbf{A B}}=\overrightarrow{\mathrm{BC}}\).
Solution:
(i) Let \(\vec{a}, \vec{b}, \vec{c} \text { and } \vec{d}\) are the position vectors of points A, B, C and D respectively.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 23

(ii) Given P.V of A = \(\hat{i}+\hat{j}\)
P.V of B = \(2 \hat{i}+2 \hat{j}\)
Let the coordinates of C be (a, b)
∴ P.V. of C = \(a \hat{i}+b \hat{j}\)
Since \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{BC}}\)
⇒ P.V of B – P.V of A = P.V of C – P.V of B
⇒ \((2 \hat{i}+2 \hat{j})-(\hat{i}+\hat{j})=(a \hat{i}+b \hat{j})-(2 \hat{i}+2 \hat{j})\)
⇒ \(\hat{i}+\hat{j}=(a-2) \hat{i}+(b-2) \hat{j}\)

Since if two vectors are equal then their corresponding components are also equal.
∴ 1 = a – 2
⇒ a = 3
and 1 = b – 2
⇒ b = 3.
Hence the coordinates of point C be (3, 3).

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 29.
If the components of \(\vec{a}\) are (1, 2) and \(\vec{b}=\hat{i}-\hat{j}+\vec{a}\), then what are the componcnts of \(2 \vec{a}-3 \vec{b}\) ?
Solution:
Since the components of \(\vec{a}\) are (1, 2)
∴ \(\vec{a}=\hat{i}+2 \hat{j}\)
and \(\vec{b}=\hat{i}-\hat{j}+\vec{a}\)
= \(\hat{i}-\hat{j}+\hat{i}+2 \hat{j}\)
= \(2 \hat{i}+\hat{j}\)
∴ \(2 \vec{a}-3 \vec{b}=2(\hat{i}+2 \hat{j})-3(2 \hat{i}+\hat{j})\)
= \(2 \hat{i}+4 \hat{j}-6 \hat{i}-3 \hat{j}\)
= \(-4 \hat{i}+\hat{j}\)
∴ Components of \(2 \vec{a}-3 \vec{b}\) are (- 4, 1).

Question 30.
Let \(\overrightarrow{\mathrm{PQ}}\) be a vector of magnitude 8 units making an angle of 30° with x-axis lying in fourth quadrant. Find its components along x-axis and y-axis.
Solution:
Given |\(\overrightarrow{\mathrm{PQ}}\)| = 8 units
and \(\overrightarrow{\mathrm{PQ}}\) making an angle of 30° with x-axis and lying in fourth quadrant.
Let < l, m > be the direction cosine of \(\overrightarrow{\mathrm{PQ}}\)
∴ l = cos 330°
= cos (360° – 30°)
= cos 30°
= \(\frac{\sqrt{3}}{2}\)
and l2 + m2 = 1
m2 = 1 – l2
m = – \(\sqrt{\left(1-\frac{3}{4}\right)}\)
= \(-\sqrt{\frac{1}{4}}=-\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 24

or m = cos (240°)
= cos (180° + 60°)
= – cos 60°
= – \(\frac{1}{2}\)
∴ |\(\overrightarrow{\mathrm{PQ}}=|\overrightarrow{\mathrm{PQ}}|(l \hat{i}+m \hat{j})\)|
= 8 \(\left(\frac{\sqrt{3}}{2} \hat{i}-\frac{1}{2} \hat{j}\right)\)
⇒ \(\overrightarrow{\mathrm{PQ}}=4 \sqrt{3} \hat{i}-4 \hat{j}\)
Thus, components of \(\overrightarrow{\mathrm{PQ}}\) along x – axis and y – axis are ; 4√3 and – 4.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 31.
(i) Show that the points (0, – 1), (1, 0) and (3, 2) are collinear.
(ii) The position vectors of the points A, B, C are \(2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}\) and \(\hat{i}+4 \hat{j}-3 \hat{k}\) respectively, show that A, B, C are collinear.
Solution:
(i) The position vectors of points A (0, – 1), B (1, 0) and C (3, 2) are \(-\hat{j}, \hat{i}, 3 \hat{i}+2 \hat{j}\).
∴ \(\overrightarrow{\mathrm{AB}}\) = P.V. of B – P.V. of A
= \(\hat{i}-(-\hat{j})\)
= \(\hat{i}+\hat{j}\)

∴ \(\overrightarrow{\mathrm{AC}}\) = P.V. of C – P.V. of A
= \(3 \hat{i}+2 \hat{j}-(-\hat{j})\)
= \(3 \hat{i}+3 \hat{j}\)

Since \(\overrightarrow{\mathrm{AB}}=\frac{1}{3} \overrightarrow{\mathrm{AC}}\)

Thus the vectors \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{AC}}\) are collinear.

∴ \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{AC}}\) are having same or parallel supports.

But \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{AC}}\) are coinitial vectors

∴ they are having same support. Thus, the points A, B and C are collinear.

(ii) Let A, B and Care the points whose position vectors are \(2 \hat{i}+\hat{j}-\hat{k}\), \(3 \hat{i}-2 \hat{j}+\hat{k}\) and \(\hat{i}+4 \hat{j}-3 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 26

Thus \(\overrightarrow{\mathrm{BC}} \text { and } \overrightarrow{\mathrm{AB}}\) are parallel vectors and the point B is common to both vectors.
Thus \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{BC}}\) are collinear vectors and hence the points A, B, and c are collinear points.

Question 32.
If \(\vec{a}, \vec{b}\) are position vectors of points A (1, – 1) and B (- 3, m), then find the value of m so that the origin O, and points A and B are
(i) collinear
(ii) not collinear.
Solution:
(i) Given \(\vec{a}\) = P.V.of A
= \(\hat{i}-\hat{j}\)
and \(\vec{b}\) = P.V.of B
= \(-3 \hat{i}+m \hat{j}\)
Since the points O, A and B are collinear.
Thus \(\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}\) are collinear.
∴ \(\overrightarrow{\mathrm{OA}}=\lambda \overrightarrow{\mathrm{OB}}\) for sorne non-zero scalar λ.
⇒ \(\vec{a}-\overrightarrow{0}=\lambda(\vec{b}-\overrightarrow{0})\)
⇒ \(\hat{i}-\hat{j}=\lambda(-3 \hat{i}+m \hat{j})\)
∴ 1 = – 3 λ
and – 1 = λ m
⇒ λ = – \(\frac{1}{3}\)
and – 1 = – \(\frac{1}{3}\) m
m = 3.

(ii) Now points O, A, B are non collinear if m ≠ 3.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 33.
(i) if the points (α, – 1), (2, 1) and (4, 5) are collinear, then find a by vector method.
(ii) Using vectors, find he value of λ such that (λ, – 10, 3), (1, – 1, 3) amd (3, 5, 3) are collinear. (NCERT Exemplar)
Solution:
(i) Let the given points are A (α, – 1), B (2, 1) and C (4, 5)
∴ P.V of A = \(\alpha \hat{i}-\hat{j}\) ;
P.V of B = \(2 \hat{i}+\hat{j}\)
and P.V of C = \(4 \hat{i}+5 \hat{j}\)

∴ \(\overrightarrow{\mathrm{AB}}\) = P.V of B – P.V of A
= \((2 \hat{i}+\hat{j})-(\alpha \hat{i}-\hat{j})\)
= (2 – α) \(\hat{i}+2 \hat{j}\)

\(\overrightarrow{\mathrm{AC}}\) = P.V of C – P.V of A
= \((4 \hat{i}+5 \hat{j})-(\hat{i}-\hat{j})\)
= (4 – α) \(\hat{i}+6 \hat{j}\)

Since A, B and C are collinear points.
Thus \(\overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{AC}}\) are collinear vectors.
Thus, \(\overrightarrow{\mathrm{AB}}=\lambda \overrightarrow{\mathrm{AC}}\) for some non-zero scalar λ.

⇒ \((2-\alpha) \hat{i}+2 \hat{j}\) = λ \([(4-\alpha) \hat{i}+6 \hat{j}]\)
∴ 2 – α = λ (4 – α)
and 2 = 6λ
λ = \(\frac{1}{3}\)
⇒ 2 – α = \(\frac{1}{3}\) (4 – α)
⇒ 6 – 3α = 4 – α
⇒ 3α – α = 6 – 4
⇒ 2α = 2
⇒ α = 1

(ii) Let A (λ, – 10, 3), B (1, – 1, 3) and C (3, 5, 3) are given points.
∴ \(\overrightarrow{\mathrm{AB}}\) = P.V.of B – P.V.of A
= \((\hat{i}-\hat{j}+3 \hat{k})-(\lambda \hat{i}-10 \hat{j}+3 \hat{k})\)
= \((1-\lambda) \hat{i}+9 \hat{j}+0 \hat{k}\)

& \(\overrightarrow{\mathrm{BC}}\) = P.V.of C – P.V.of B
= \((3 \hat{i}+5 \hat{j}+3 \hat{k})-(\hat{i}-\hat{j}+3 \hat{k})\)
= \(2 \hat{i}+6 \hat{j}+0 \hat{k}\)
Since A, B, C are collinear points.
∴ \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{BC}}\) are collinear vectors.
∴ \(\overrightarrow{\mathrm{AB}}=m \overrightarrow{\mathrm{BC}}\) for some scalar m.
⇒ \((1-\lambda) \hat{i}+9 \hat{j}=m[2 \hat{i}+6 \hat{j}]\)
Comparing the coefficients of \(\hat{i} \& \hat{j}\) on both sides, we have,
1 – λ = 2m ………………….(1)
and 9 = 6m
⇒ m = 3/2
∴ From (1) ; we have
1 – λ = 2 × \(\frac{3}{2}\)
⇒ 1 – λ = 3
⇒ λ = – 2

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 33. (old).
(ii) Show that the points A (2, 6, 3), B (1, 2, 7) and C (3, 10, – 1) are collinear.
Solution:
Let O be the origin of reference

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 25

∴ \(\overrightarrow{\mathrm{AC}} \text { and } \overrightarrow{\mathrm{AB}}\) are parallel and also coinitial vectors.
Hence A, B, C are collinear.

Question 34.
If \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\), \(\vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}\) and \(\vec{c}=\hat{i}-2 \hat{j}+\hat{k}\) then find a vector of magnitude 6 units which is parallel to the vector \(2 \vec{a}-\vec{b}+3 \vec{c}\).
Solution:
Given \(\vec{a}=\hat{i}+\hat{j}+\hat{k}\),
\(\vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}\)
and \(\vec{c}=\hat{i}-2 \hat{j}+\hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 27

Question 35.
(i) Show that the points A, B and C with position vectors \(3 \hat{i}-4 \hat{j}-4 \hat{k}\), \(2 \hat{i}-\hat{j}+\hat{k}\) and \(\hat{i}-3 \hat{j}-5 \hat{k}\) respectively form the vertices of a right-angled triangle. (NCERT)
(ii) If the vertices of a triangle are A (2, – 1, 1), B (1, – 3, – 5) and C (3, – 4, – 4), then prove by vector method that it is a right- angled triangle.
(iii) If the position vectors of the vertices of a triangle ABC are \(\hat{i}+2 \hat{j}+3 \hat{k}\), \(2 \hat{i}+3 \hat{j}+\hat{k}\) and \(3 \hat{i}+\hat{j}+2 \hat{k}\), then prove that ∆ABC is an equilateral triangle.
Solution:
Let A, B, C are the points whose position vectors are \(\vec{a}, \vec{b}, \vec{c}\)
i.e., \(\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}\) ;
\(\vec{b}=2 \hat{i}-\hat{j}+\hat{k}\)
and \(\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}\)

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 28

Clearly BC2 = AB2 + AC2
[∵ 41 = 35 + 6]
Hence pythagoras theorem is verified.
Thus the points A, B, C form the vertices of right angled ∆.

(ii) Let A, B, C are the points whose position vectors are latex]\vec{a}, \vec{b}, \vec{c}[/latex].

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 29

So points A, B and C form a triangle.
Clearly
AB2 = CA2 + CB2
[∵ 41 = 35 + 6]
Hence pythagoras theorem is verified. Thus the points A, B C form the vertices of right angled ∆.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

(iii) Let O be the origin of reference.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1 30

Question 36.
The position vectors \(\vec{a}, \vec{b}, \vec{c}\) of three given points satisfy the relation \(4 \vec{a}-9 \vec{b}+5 \vec{c}=\overrightarrow{0}\). Prove that the three points are collinear.
Solution:
Let \(\vec{a}, \vec{b}, \vec{c}\) are position vectors of given points A, B and C respectively.
Since \(4 \vec{a}-9 \vec{b}+5 \vec{c}=\overrightarrow{0}\)
⇒ \(9 \vec{b}=4 \vec{a}+5 \vec{c}\)
⇒ \(\vec{b}=\frac{4 \vec{a}+5 \vec{c}}{4+5}\)

Thus point B divides CA internally in the ratio 4 : 5.
∴ point B lies on CA.
Thus A, B, C lies on same line and hence the given points A, B and C are collinear.

ML Aggarwal Class 12 Maths Solutions Section B Chapter 1 Vectors Ex 1.1

Question 38 (old).
If \(\vec{a}, \vec{b}\) are position vectors of A, B with reference to origin O, find the position vector of a point C in AB produced such that 2AC = 3AB.
Solution:
Given \(\vec{a}, \vec{b}\) are the position vectors of A
and B with reference to origin O.
∴ \(\overrightarrow{\mathrm{OA}}=\vec{a}\) ;
\(\overrightarrow{\mathrm{OB}}=\vec{b}\)
Given, 2AC = 3AB
⇒ \(2 \overrightarrow{\mathrm{AC}}=3 \overrightarrow{\mathrm{AB}}\)
⇒ \(2(\vec{c}-\vec{a})=3(\vec{b}-\vec{a})\)
where \(\vec{c}\) be the position vectors of point C.
⇒ \(2 \vec{c}=3 \vec{b}-3 \vec{a}+2 \vec{a}=3 \vec{b}-\vec{a}\)
⇒ \(\vec{c}=\frac{3 \vec{b}-\vec{a}}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Interactive ML Aggarwal Class 12 ISC Solutions engage students in active learning and exploration.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Choose the correct answer from the given four options in questions (1 to 53):

Question 1.
The degree of the differential equation \(\frac{d^2 y}{d x^2}+3\left(\frac{d y}{d x}\right)^2=x^2 \log \left(\frac{d^2 y}{d x^2}\right)\)
(a) 1
(b) 2
(c) 3
(d) Not defined
Solution:
(d) Not defined

Given diff. eqn. be, \(\frac{d^2 y}{d x^2}+3\left(\frac{d y}{d x}\right)^2=x^2 \log \left(\frac{d^2 y}{d x^2}\right)\)
Here R.H.S. of given diff. eqn. cannot be expressed as polynomial in derivative so degree of given diff. eqn. be not defined.

Question 2.
The degree of the differential equation \(\left(1+\left(\frac{d y}{d x}\right)^2\right)^{\frac{3}{2}}=\frac{d^2 y}{d x^2}\) is
(a) 4
(b) \(\frac{3}{2}\)
(c) 2
(d) not defined
Solution:
(c) 2

Given diff. eqn. be, \(\frac{d^2 y}{d x^2}=\left[1+\left(\frac{d y}{d x}\right)^2\right]^{3 / 2}\)
On squaring both sides ; we have
\(\left(\frac{d^2 y}{d x^2}\right)^2=\left[1+\left(\frac{d y}{d x}\right)^2\right]^3\)
The highest order derivative present in given diff. eqn. \(\frac{d^2 y}{d x^2}\) and its power is 2.
Thus the order of given diff. eqn. be 2 and degree 2.
Clearly it is a non linear differential eqn., as it contains terms like \(\left(\frac{d^2 y}{d x^2}\right)^2\) and \(\left(\frac{d y}{d x}\right)^2\).

Question 3.
The order and the degree of the differential equation \(\left(\frac{d y}{d x}\right)^5+3 x y\left(\frac{d^3 y}{d x^3}\right)^2+y^2\left(\frac{d^2 y}{d x^2}\right)^3\) = 0 respectively, are
(a) 2, 3
(b) 3, 2
(c) 3, 5
(d) 1, 5
Solution:
(b) 3, 2

The highest ordered derivative existing in given differential eqn. be \(\frac{d^3 y}{d x^3}\) so its order be 3.
Further, given diff. eqn. can be expressed as polynomial in derivatives.
So the highest exponent of \(\frac{d^3 y}{d x^3}\) which is 2 gives the degree of given diff. eqn.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 4.
The degree of the differential equation \(\left\{3-\left(\frac{d y}{d x}\right)^2\right\}^{5 / 3}=x^3\left(\frac{d^2 y}{d x^2}\right)\), is
(a) 2, 1
(b) 2, 2
(c) 2, 3
(d) 2, 5
Solution:
(c) 2, 3

Given differential eqn. be \(\left\{3-\left(\frac{d y}{d x}\right)^2\right\}^{5 / 3}=x^3\left(\frac{d^2 y}{d x^2}\right)\)
cubing on both sides ; we have
\(\left[3-\left(\frac{d y}{d x}\right)^2\right]^5=x^9\left(\frac{d^2 y}{d x^2}\right)^3\) …………….(1)
Here highest ordered derivative present in given diff. eqn (1) be \(\frac{d^2 y}{d x^2}\).
Hence, its order is 2 and also its power be 3.
∴ degree of given eqn (1) be 3.

Question 5.
The order and the degree of the differential equation \(\left(1+3 \frac{d y}{d x}\right)^{\frac{2}{3}}=4 \frac{d^3 y}{d x^3}\), respectively, are
(a) 3, \(\frac{3}{2}\)
(b) 3, 1
(c) 3, 2
(d) 3, 3
Solution:
(d) 3, 3

Given diff. eqn. be
\(\left(1+3 \frac{d y}{d x}\right)^{\frac{2}{3}}=4 \frac{d^3 y}{d x^3}\)
On cubing both sides; we have
\(\left(1+3 \frac{d y}{d x}\right)^2=\left(4 \frac{d^3 y}{d x^3}\right)^3\)
The highest ordered derivative existing in given diff. eqn. be \(\frac{d^3 y}{d x^3}\)
so its order be 3.
Further given diff. eqn. can be expressible as polynomial in derivatives.
Thus degree of given diff. eqn. be the highest exponent of \(\frac{d^3 y}{d x^3}\) which is 3.

Question 6.
The order and degree of the differential equation \(\frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^{1 / 4}+x^{1 / 5}\) = 0
(a) 2, 4
(b) 2, 2
(c) 2, 3
(d) 2, not defined
Solution:
(a) 2, 4

Given diff. eqn be
\(\frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^{1 / 4}+x^{1 / 5}\) = 0
⇒ \(\frac{d^2 y}{d x^2}+x^{1 / 5}=-\left(\frac{d y}{d x}\right)^{1 / 4}\)
⇒ \(\left[\frac{d^2 y}{d x^2}+x^{y / 5}\right]^4=+\frac{d y}{d x}\)
which is polynomial in derivatives.
Also the highest ordered derivative existing in given diff. eqn be and its power be 4.
Thus the order of given differential eqn. be 2 and its degree be 4.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 7.
The order of the differential equation representing the family of curves y = ax + a3
(a) 1, 1
(b) 1, 3
(c) 1, 2
(d) 2, 3
Solution:
(b) 1, 3

y = ax + a3
∴ From given eqn ; we have
y = x \(\frac{d y}{d x}\) + (\(\frac{d y}{d x}\))3
which is diff. eqn. of order 1 and degree 3.

Question 8.
The order of the differential equation of the family of circles of radius r.
(a) 1
(b) 2
(c) 3
(d) 4
Solution:
(b) 2

Eqn. of families of circle with centre (h, k)
and radius r is given by
(x – a)2 + (y – b)2 = r2 ……………..(1)
Diff. (1) w.r.t. x,. we have
2 (x – a) + 2 (y – b) y1 = 0
⇒ (x – a) + (y – b) y1 = 0 ……………….(2)
Diff. eqn (2) w.r.t. x; we have
1 + (y + b)y2 + y12 = 0
⇒ (y – b) = – \(\frac{\left(1+y_1^2\right)}{y_2}\)
∴ From (2); we have
x – a = – (y – b) y1
= \(\frac{\left(1+y_1^2\right) y_1}{y_2}\)
∴ From eqn (1) ; we have
\(\frac{\left(1+y_1^2\right)^2 y_1^2}{y_2^2}+\frac{\left(1+y_1^2\right)^2}{y_2^2}\) = r2
clearly required order of duff. eqn. be 2.

Question 9.
Which of the following is a second order differential equation?
(a) (y’)2 + x = y2
(b) y’ = y2
(c) y’y” + y = sin x
(d) y”’ + (y”)2 + y = o.
Solution:
(c) y’y” + y = sin x

Clearly the highest ordered derivative existing in given duff. eqn. y’y” + y = sin x be y”. so its order be 2.

Question 10.
The differential equation of the family
of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is
(a) (x2 – y2) \(\frac{d y}{d x}\) = 2xy
(b) 2 (x2 + y2) \(\frac{d y}{d x}\) = xy
(c) 2 (x2 – y2) \(\frac{d y}{d x}\) = xy
(d) (x2 + y2) \(\frac{d y}{d x}\) = 2xy
Solution:
(a) (x2 – y2) \(\frac{d y}{d x}\) = 2xy

Given diff. eqn. be, x2 + y2 – 2ay = 0 ……………(1)
Diff. eqn. (1) both sides w.r.t. x; we have
2x + 2y – 2a \(\frac{d y}{d x}\) = 0
⇒ (x + y \(\frac{d y}{d x}\)) = a \(\frac{d y}{d x}\)
∴ from (1) ; we have
x2 + y2 – 2y \(\frac{\left(x+y \frac{d y}{d x}\right)}{\frac{d y}{d x}}\) = 0
⇒ (x2 + y2) \(\frac{d y}{d x}\) – 2xy – 2y2 \(\frac{d y}{d x}\) = 0
⇒ (x2 – y2) \(\frac{d y}{d x}\) = 2xy
which is the required differential equation.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 11.
The differential equation of the family of curves y2 = 4a (x + a), where a is arbitrary constant, is
(a) y2 = 4 \(\frac{d y}{d x}\) (x + \(\frac{d y}{d x}\))
(b) y \(\frac{d y}{d x}\) = 2a
(c) y \(\frac{d^2 y}{d x^2}\) + (\(\frac{d y}{d x}\))2 = 0
(d) 2x \(\frac{d y}{d x}\) + y (\(\frac{d y}{d x}\))2 = y
Solution:
(d) 2x \(\frac{d y}{d x}\) + y (\(\frac{d y}{d x}\))2 = y

Given eq. be curve be
y2 = 4a (x + a)
where a be an arbitrary constant.
Diff. eqn. (1) w.r.t. x ; we have
2y \(\frac{d y}{d x}\) = 4a
⇒ a = \(\frac{y}{2}\) \(\frac{d y}{d x}\)
∴ from (1) ; we have
y2 = 2y \(\frac{d y}{d x}\) [x + \(\frac{y}{2} \frac{d y}{d x}\)]
⇒ y2 = 2xy \(\frac{d y}{d x}\) + y2 (\(\frac{d y}{d x}\))2

Question 12.
The differential equation for which y = a cos x + b sin x is a solution, is [NCERT Exemplar]
(a) \(\frac{d^2 y}{d x^2}\) + y = 0
(b) \(\frac{d^2 y}{d x^2}\) – y = 0
(c) \(\frac{d^2 y}{d x^2}\) + (a + b) y = 0
(d) \(\frac{d^2 y}{d x^2}\) + (a – b) y = 0
Solution:
(a) \(\frac{d^2 y}{d x^2}\) + y = 0

Given eqn. of solution be,
y = a cos x + b sin x ………………..(1)
Diff. eqn. (1) both sides w.r.t. x; we have
\(\frac{d y}{d x}\) = – a sin x + b cos x
Again diff. both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – a cos x – b sin x = – y
[using eqn. (1)]
⇒ \(\frac{d^2 y}{d x^2}\) + y = 0
which is the required differential equation.

Question 13.
y = aemx + be-mx, where a, b are arbitrary constants satisfies which of the following differential equation?
(a) \(\frac{d y}{d x}\) + my = 0
(b) \(\frac{d y}{d x}\) – my = 0
(c) \(\frac{d^2 y}{d x^2}\) – m2y = 0
(d) \(\frac{d^2 y}{d x^2}\) + m2y = 0
Solution:
(c) \(\frac{d^2 y}{d x^2}\) – m2y = 0

Given y = aemx + be-mx ………………(1)
where a and b are arbitrary constants
diff. eqn. (1) w.r.t. x ; we have
\(\frac{d y}{d x}\) = am emx – bm e– mx
∴ \(\frac{d^2 y}{d x^2}\) = am2 emx + bm2 e– mx
= m2 [aemx + be– mx]
= m2 y [using (1)]

Question 14.
The differential equation obtained on eliminating A and B from y A cos ωt + B sin ωt, is
B sin mt, is
(a) y” + y’ = 0
(b) y” – ω2y = 0
(c) y” = – ω2y
(d) y” + y = 0
Solution:
(c) y” = – ω2y

Given y = A cos ωt + B sin ωt …………….(1)
y’ = – Aω sin ωt + Bω cos ωt
∴ y”= – Aω2 cos ωt – Bω2 sin ωt
= – ω2 [A cos ωt + B sin ωt]
= – ω2y

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 15.
The differential equation for the family of curves sin-1 x + sin-1 y = C, where C Is arbitrary constant, is
(a) \(\sqrt{1-x^2} d x+\sqrt{1-y^2} d y\) = 0
(b) \(\sqrt{1-x^2} d x-\sqrt{1-y^2} d y\) = 0
(c) \(\sqrt{1-x^2} d y+\sqrt{1-y^2} d x\) = 0
(d) \(\sqrt{1-x^2} d y-\sqrt{1-y^2} d x\) = 0
Solution:
(c) \(\sqrt{1-x^2} d y+\sqrt{1-y^2} d x\) = 0

Given sin-1 x + sin-1 y = C
where C be an arbitrary constant
Diff. eqn. (1) w.r.t. x;
\(\frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-y^2}} \frac{d y}{d x}\) = 0
⇒ \(\frac{d x}{\sqrt{1-x^2}}+\frac{d y}{\sqrt{1-y^2}}\) = 0
⇒ \(\sqrt{1-y^2} d x+\sqrt{1-x^2} d y\) = 0

Question 16.
tan-1 x + tan-1 y = C, where C Is a parameter, is the general solution of the differential equation:
(a) \(\frac{d y}{d x}=\frac{1+y^2}{1+x^2}\)
(b) \(\frac{d y}{d x}=\frac{1+x^2}{1+y^2}\)
(c) (1+ x2) dy + (1 + y2) dx = 0
(d) (1 + x2) dy + (1 + y2) dy = 0
Solution:
(c) (1+ x2) dy + (1 + y2) dx = 0

Given tan-1 x + tan-1 y = C ……………………(1)
diff. eqn. (1) w.r.t. x ; we have
\(\frac{1}{1+x^2}+\frac{1}{1+y^2} \frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=-\frac{1+y^2}{1+x^2}\)

Question 17.
The differential equation representing the family of curves y2 = 2c (x + √c) where c (> 0) is a parameter, is of
(a) order 2, degree 2
(b) order 1, degree 3
(c) order 1, degree 1
(d) order 1. degree 2
Solution:
(b) order 1, degree 3

Given y2 = 2c (x + √c)
where c be an arbitrary constant
diff. eqn. (1) w.r.t. x ; we have
2yy’ = 2c
∴ from (1) ;
y2 = 2yy’ [x + \(\)]
⇒ y = 2xy’ + 2y’ \(\sqrt{y y^{\prime}}\)
⇒ (y – 2xy’)2 = 4y’2 (yy’) = 4yy’3
Here the highest ordered derivative existing in given diff. eqn. be y’ so its order be 1.
Clearly the given diff. eqn. can be expressed as polynomial in derivatives.
Thus, the degree of given diff. eqn. be the highest exponent of y’ which is 3.

Question 18.
Which of the following ¡s not a homogeneous function of x and y?
(a) x2 + 2y
(b) 2x – y
(c) cos2 \(\left(\frac{y}{x}\right)+\frac{y}{x}\)
(d) sin x – cos y
Solution:
(d) sin x – cos y

x2 + 2xy = x2 [1 + 2(\(\frac{y}{x}\))]
= x2 Φ (\(\frac{y}{x}\))
2 – xy = x [2 – \(\frac{y}{x}\)]
= x g (\(\frac{y}{x}\)) ;
cos2 (\(\frac{y}{x}\)) + \(\frac{y}{x}\) = h (\(\frac{y}{x}\))
All of these functions are homogeneous in x and y.
Further sin x – sin y cant be expresed in the form of f (\(\frac{y}{x}\)).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 19.
Which of the following s a homogeneous differential equation?
(a) (2x – 3y + 5) dy – (3x + 2y – 4) dx = 0
(b) xy dx – (x3 – y3) dy = 0
(c) y2 dx – (x2 – xy + y2) dy = 0
(d) (y3 + 2xy) dx + 3x2 dy = 0
Solution:
(c) y2 dx – (x2 – xy + y2) dy = 0

Clearly in option (c);
The given diff. eqn. can be written as;
\(\frac{d y}{d x}=\frac{y^2}{x^2-x y+y^2}\)
= \(\frac{\left(\frac{y}{x}\right)^2}{1-\frac{y}{x}+\left(\frac{y}{x}\right)^2}\)
= \(\phi\left(\frac{y}{x}\right)\)
which is a homogeneous function of degroe 0.

Question 20.
The number of solutions of \(\frac{d y}{d x}=\frac{y+1}{x-1}\), when y(1) = 2 is
(a) none
(b) one
(c) two
(d) infinite
Solution:
(b) one

Given \(\frac{d y}{d x}=\frac{y+1}{x-1}\) ……………..(1)
after variable separation, we have
\(\frac{d y}{y+1}=\frac{d x}{x-1}\) ;
on integrating

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 1

Question 21.
Integrating factor of the differential equation x \(\frac{d y}{d x}\) + y = 3x2 is
(a) x
(b) log x
(c) \(\frac{1}{x}\)
(d) none of these
Solution:
(a) x

Given diff. eqn. can be written as;
\(\frac{d y}{d x}+\frac{y}{x}\) = 3x
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = \(\frac{1}{x}\) and Q = 3x
∴ I.F = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x
= x

Question 22.
Integrating factor of x \(\frac{d y}{d x}\) – y = x4 -3x is
(a) x
(b) log x
(c) \(\frac{1}{x}\)
(d) – x
Solution:
Given diff. eqn. can be written as ;
\(\frac{d y}{d x}\) – \(\frac{y}{x}\) = 4x3 -3
which is of the form \(\frac{d y}{d x}\) + Py = Q
where P = – \(\frac{1}{x}\) and Q = x3 – 3
∴ I.F = e∫ P dx
= \(\int_e-\frac{1}{x} d x\)
= e– log x
= e log x-1
= x-1
= \(\frac{1}{x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 23.
Integrating factor of the differential equation cos x \(\frac{d y}{d x}\) + y sin x = 1, is
(a) sin x
(b) sec x
(c) tan x
(d) cos x
Solution:
(b) sec x

Given differential equation be,
cos x \(\frac{d y}{d x}\) + y sin x = 1
⇒ \(\frac{d y}{d x}+y \frac{\sin x}{\cos x}\) = sec x
which is L.D.E. of the form
\(\frac{d y}{d x}\) + Py = Q
where P = tan x
and Q = sec x
∴ I.F. = e∫ P dx
= e∫ tan x dx
= e– log cos x
= \(e^{\log \frac{1}{\cos x}}\)
= \(\frac{1}{\cos x}\)
= sec x

Question 24.
Integratlng factor of the differential equation (1 – x2) \(\frac{d y}{d x}\) – xy = 1 is
(a) – x
(b) \(\frac{x}{1+x^2}\)
(c) \(\sqrt{1-x^2}\)
(d) \(\frac{1}{2}\) log(1 – x2)
Solution:
(c) \(\sqrt{1-x^2}\)

Given diff. eqn. can be written as;
\(\frac{d y}{d x}-\frac{x}{1-x^2} y=\frac{1}{\left(1-x^2\right)}\)
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 2

Question 25.
The integrating factor of the differential equation (x log x) \(\frac{d y}{d x}\) + y = 2 log x, given by
(a) log (log x)
(b) ex
(c) log x
(d) x
Solution:
(c) log x

Given diff. eqn. be,
(x log x) \(\frac{d y}{d x}\) + y = 2 log x
which is linear differential eqn.
and is of the form \(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x \log x}\)
and Q = \(\frac{2}{x}\)
Now I.F = e∫ P dx
= \(e^{\int \frac{1 / x}{\log x} d x}\)
= elog (log x)
= log x

Question 26.
Integrating factor of the differential equation (1 – y2) \(\frac{d x}{d y}\) + xy = ay is
(a) \(\frac{1}{1-y^2}\)
(b) \(\frac{1}{\sqrt{y^2-1}}\)
(c) \(\frac{1}{y^2-1}\)
(d) \(\frac{1}{\sqrt{1-y^2}}\)
Solution:
(d) \(\frac{1}{\sqrt{1-y^2}}\)

Given diff. eqn. can be written as
\(\frac{d x}{d y}+\left(\frac{y}{1-y^2}\right) x=\frac{d y}{1-y^2}\)
which is L.D.E in x and is of the form
\(\frac{d x}{d y}\) + Py = Q

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 27.
Integrating factor of the differential equation \(\frac{d y}{d x}\) + y = \(\frac{x^3+y}{x}\) is
(a) xex
(b) \(\frac{x}{e^x}\)
(c) \(\frac{e^x}{x}\)
(d) ex
Solution:
(c) \(\frac{e^x}{x}\)

Given diff eqn. can be written as ;
\(\frac{d y}{d x}+\left(1-\frac{1}{x}\right) y\) = x2
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = 1 – \(\frac{1}{x}\)
and Q = x2
∴ I.F. = e∫ P dx
= \(e^{\int\left(1-\frac{1}{x}\right) d x}\)
= ex – log x
= ex elog x-1
= ex \(\frac{1}{x}\)

Question 28.
Solution of the differential \(\frac{d x}{x}\) + \(\frac{d y}{y}\) = 0 is
(a) \(\frac{1}{x}+\frac{1}{y}\) = C
(b) xy = C
(c) log x log y = C
(d) x + y = C
Solution:
(b) xy = C

Given diff eqn. can be written as ;
\(\frac{d x}{x}\) + \(\frac{d y}{y}\) = 0
On integrating both sides ; we have
\(\int \frac{d x}{x}+\int \frac{d y}{y}\) = log C
⇒ log |x| + log |y| = log C
⇒ log |xy| = log C
⇒ xy = ± C = A

Question 29.
The solution of the differential equation \(\frac{x d y}{d x}\) + 2y = x2 is
(a) y = \(\frac{x^2}{4}\) + C
(b) y = \(\frac{x^2+C}{4 x^2}\)
(c) y = \(\frac{x^2+C}{x^2}\)
(d) y = \(\frac{x^4+C}{4 x^2}\)
Solution:
(d) y = \(\frac{x^4+C}{4 x^2}\)

Given differential equation can be written as;
\(\frac{d y}{d x}+\frac{2}{x} y\) + 2y = x2
which is first order L.D.E. in y and is of the form
\(\frac{x d y}{d x}\) + Py = Q ;
where P = \(\frac{2}{x}\) and Q = x
∴ I.F. = e∫ P dx
= \(e^{\int \frac{2}{x} d x}\)
= e2 log |x|
= elog |x|2
= x2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . x2 = ∫ x . x2 dx + C
⇒ x2y = \(\frac{x^4}{4}\) + C
⇒ y = \(\frac{x^4+C}{4 x^2}\) be the required solution.

Question 30.
Solution of the differential equation tan y sec2 x dx + tan x sec2 y dy is
(a) tan x+ tany = C
(b) tan x – tan y = C
(c) tan x tany = C
(d)tan x = C tan y
Solution:
(c) tan x tany = C

Given diff. eqn. can be written as ;
\(\frac{\sec ^2 x d x}{\tan x}+\frac{\sec ^2 y d y}{\tan y}\) = 0
On integrating ; we have
\(\int \frac{\sec ^2 x d x}{\tan x}+\int \frac{\sec ^2 y d y}{\tan y}\) = log C
⇒ log |tan x| + log |tan y| = log C
[∵ ∫ \(\frac{f^{\prime}(x)}{f(x)}\) dx = log |f(x)| + C]
⇒ log |tan x tan y| = log C
⇒ tan x tan y = ± C = A

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 31.
The solution of the differential equation \(\frac{d y}{d x}=\frac{1+y^2}{1+x^2}\) is
(a) y = tan-1 x + C
(b) x = tan-1 y + C
(c) tan (xy) = C
(d) y – x = C (1 + xy)
Solution:
(d) y – x = C (1 + xy)

Given \(\frac{d y}{d x}=\frac{1+y^2}{1+x^2}\)
After variable separation, we have
\(\frac{d y}{1+y^2}=\frac{d x}{1+x^2}\) ;
on integrating
\(\int \frac{d y}{1+y^2}-\int \frac{d x}{1+x^2}\) = A
⇒ tan-1 y – tan-1 x = A
⇒ tan-1 \(\left(\frac{y-x}{1+x y}\right)\) = A
⇒ y – x = C (1 + xy) ; where tan A = C

Question 32.
The solution of th differential equation \(\frac{d y}{d x}=\sqrt{\frac{1-y^2}{1-x^2}}\) is
(a) sin-1 y – sin-1 x = C
(b) sin-1 y + sin-1 x = C
(c) sin-1 (xy) = C
(d) none of these
Solution:
(a) sin-1 y – sin-1 x = C

After variable separation, we have
\(\frac{d y}{\sqrt{1-y^2}}=\frac{d x}{\sqrt{1-x^2}}\) ;
On integrating
\(\int \frac{d y}{\sqrt{1-y^2}}=\int \frac{d x}{\sqrt{1-x^2}}+\mathrm{C}\)
⇒ sin-1 y – sin-1 x = C

Question 33.
The general solution of ex cos y dx – ex sin y dy = 0 is
(a) ex sin y = C
(b) ex cos y = C
(c) ex = C cos y
(d) ex = C sin y
Solution:
(b) ex cos y = C

Given diff. eqn. can be written as ;
ex [dx – \(\frac{\sin y}{\cos y}\) dy] = 0
⇒ dx – \(\frac{\sin y}{\cos y}\) dy = 0
On integrating both sides ; we have
∫ dx = ∫ \(\frac{\sin y}{\cos y}\) dy + C
⇒ x = – log |cos y| + C
⇒ log |cos y| = C – x
⇒ |cos y| = eC – x
= Ae-x
⇒ ex cos y = ± A = B

Question 34.
The solution of the equation (2y – 1) dx – (2x + 3) dy = 0 is
(a) \(\frac{2 x-1}{2 y+3}\) = C
(b) \(\frac{2 y+1}{2 x-3}\) = C
(c) \(\frac{2 x+3}{2 y-1}\) = C
(d) \(\frac{2 x-1}{2 y-3}\) = C
Solution:
(c) \(\frac{2 x+3}{2 y-1}\) = C

After variable separation, we have
\(\frac{d x}{2 x+3}-\frac{d y}{2 y-1}\) = 0 ;
On integrating

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 35.
The general solution of \(\frac{d y}{d x}\) + y tan x = sec x is
(a) y sec x tan x + C
(b) y tan x = sec x + C
(c) x sec x = tan y + C
(d) none of these
Solution:
(a) y sec x tan x + C

Given diff. eqn. be
\(\frac{d y}{d x}\) + y tan x = sec x
which is linear diff. eqn. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = tan x ; Q = sec x
∴ I.F. = e∫ P dx
= e∫ tan x dx
= \(e^{\int \frac{\sin x d x}{\cos x}}\)
= e– log |cos x|
= elog |cos x|-1
= \(\frac{1}{cos x}\)
= sec x
and general solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . sec x = ∫ sec2 x dx + C
= tan x + C

Question 36.
The solution of the differential equation \(\frac{d y}{d x}+\frac{2 x y}{1+x^2}=\frac{1}{\left(1+x^2\right)^2}\) is
(a) y log (1 + x2) = tan-1 x + C
(b) y (1 + x2) = tan-1 x + C
(c) y (1 + x2) sin-1 x + C
(d) \(\frac{y}{1+x^2}\) = tan-1 x + C
Solution:
(b) y (1 + x2) = tan-1 x + C

Given diff. eqn. be,
\(\frac{d y}{d x}+\left(\frac{2 x}{1+x^2}\right) y=\frac{1}{\left(1+x^2\right)^2}\)
which is L.D.E my and is of the form
\(\frac{d y}{d x}\) + Py = Q;
where P = \(\frac{2 x}{1+x^2}\)
and Q = \(\frac{1}{\left(1+x^2\right)^2}\)
Here I.F = e∫ P dx
= \(e^{\int \frac{2 x}{1+x^2} d x}\)
= elog (1 + x2)
= 1 + x2
and general solution be given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . (1 + x2) = ∫ \(\frac{1}{\left(1+x^2\right)^2}\) (1 + x2) dx + C
= tan-1 x + C

Question 37.
The general solution of the differential equation \(\frac{d y}{d x}\) + y cot x = cosec x, is
(a) x + y sin x = C
(b) x + y cos x = C
(c) y + x (sin x + cos x) = C
(d) y sin x = x + C
Solution:
(d) y sin x = x + C

Given \(\frac{d y}{d x}\) + y cot x = cosec x
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q
where P = cot x & Q = cosec x
∴ I.F. = e∫ P dx
= e∫ cot x dx
= elog sin x
= sin x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + c
y . sin x = ∫ cosec x . sin x dx + c
= x + c

Question 38.
The solution of the differential equation \(\frac{d y}{d}-\frac{y(x+1)}{x}\) = 0 is given by
(a) y = xex + c
(b) x= yex
(c) y = x + C
(d) xy = ex + C
Solution:
(a) y = xex + c

Given diff. eqn be \(\frac{d y}{d}- y \frac{(x+1)}{x}\) = 0
⇒ \(\frac{1}{y} d y-\left(\frac{x+1}{x}\right) d x\) = 0 ;
on integrating
⇒ log y – (x + log x) = C
⇒ log \(\frac{y}{x}\) = x + C
⇒ \(\frac{y}{x}\) = x + C
⇒ \(\frac{y}{x}\) = ex + C
⇒ y = xex + C be the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 39.
The general solution of the differential equation \(\frac{d y}{d x}\) = ex + y, is
(a) ex + e-y = C
(b) ex + ey = C
(c) e-x + ey = C
(d) e-x + e-y = C
Solution:
(a) ex + e-y = C

Given diff. eqn be,
\(\frac{d y}{d x}\) = ex + y
⇒ \(\frac{d y}{d x}\) = e-x . ey
⇒ e-y dy = ex dx
on integrating; we have
e-y = ex + c
⇒ e-y + e-x = A be the required solution.

Question 40.
General solution of the differential equation(1 + x) y dx + (1 – y) x dy = 0 is
(a) log xy + x – y = C
(b) log xy – x + y = C
(c) log (\(\frac{x}{y}\)) + x + y = C
(d) log (\(\frac{x}{y}\)) – x + y = C
Solution:
(a) log xy + x – y = C

Given differential eqn. can be written s;
\(\frac{(1+x)}{x} d x+\frac{(1-y)}{y} d y\) = 0
On integrating both sides ; we have
\(\int\left(\frac{1}{x}+1\right) d x+\int\left(\frac{1}{y}-1\right) d y\) = C
⇒ log |x| + x + log |y| – y = C
⇒ log |xy| + x – y = C

Question 41.
Solution of the differential equation \(\frac{d y}{d x}\) = ex – y + x2 e-y is
(a) y = ex – y – x2 e-y + C
(b) ex + ey = \(\frac{x^3}{3}\) + C
(c) ey – ex = \(\frac{x^3}{3}\) + C
(d) ex – ey = \(\frac{x^3}{3}\) + C
Solution:
(c) ey – ex = \(\frac{x^3}{3}\) + C

Given \(\frac{d y}{d x}\) = ex – y + x2 e-y
= e-y (ex + x2)
On integrating both sides;
⇒ ∫ ey dy = ∫ (ex + x2) dx + C
⇒ ey = ex + \(\frac{x^3}{3}\) + C

Question 42.
General solution of the differential equation \(\frac{d y}{d x}\) = \(e^{\frac{x^2}{2}}\) + xy is
(a) Y = (C – x) \(e^{\frac{x^2}{2}}\)
(b) y = (x + C) \(e^{\frac{x^2}{2}}\)
(c) y = C\(e^{-\frac{x^2}{2}}\)
(d) y = C
Solution:
(b) y = (x + C) \(e^{\frac{x^2}{2}}\)

Given diff. eqn. be,
\(\frac{d y}{d x}\) = \(e^{\frac{x^2}{2}}\) + xy
⇒ \(\frac{d y}{d x}\) – xy = \(e^{\frac{x^2}{2}}\)
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = – x ; Q = \(e^{\frac{x^2}{2}}\)
∴ I.F. = e∫ P dx
= e∫ – x dx
= \(e^{-\frac{x^2}{2}}\)
and general solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y\(e^{-\frac{x^2}{2}}\) = ∫ \(\int e^{\frac{x^2}{2}-\frac{x^2}{2}}\) dx + C
= x + C
⇒ y = (x + C) \(e^{\frac{x^2}{2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 43.
General solution of the differential equation \(\frac{d y}{d x}\) = 2x ex2 – y is
(a) e– y + C
(b) ey = ex2 + C
(c) ex2 – y = C
(d) ex2 + y = C
Solution:
(b) ey = ex2 + C

Given \(\frac{d y}{d x}\) = 2x ex2 – y
= 2x ex2 e-y
⇒ ey dy = 2x ex2 dx
[after variable separation]
On integrating both sides we have
∫ ey dy = ∫ 2x ex2 dx + C
⇒ ey = ∫ et dt + C
[where x2 = t
⇒ 2x dx = dt]
⇒ ey = et + C
⇒ ey = ex2 + C

Question 44.
General solution of the differential equation (ex + 1) y dy = (y + 1) ex dx is
(a) y + 1 = C (ex + 1)
(b) y + 1 = ex + 1 + C
(c) y = log(C (y + 1) (ex + 1))
(d) none of these
Solution:
(c) y = log(C (y + 1) (ex + 1))

Given (ex + 1) y dy = (y + 1) ex dx
After variable separation, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 5

[where ex = t
= ex dx = dt]
⇒ y – log |y + 1| = log |t + 1| + cos C
⇒ y – log |y + 1| = log |ex + 1| + log c
⇒ y = log {|y + ||ex + 1| C}
⇒ y = log (C (y + 1) (ex + 1))

Question 45.
General solution of the differential equation x \(\frac{d y}{d x}\) + y = ex is
(a) y = \(\frac{e^x}{x}+\frac{C}{x}\)
(b) y = x ex + Cx
(c) y = xex + C
(d) x = \(\frac{e^y}{y}+\frac{c}{y}\)
Solution:
Given diff. eqn. can be written as
\(\frac{d y}{d x}+\frac{y}{x}=\frac{e^x}{x}\)
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = \(\frac{1}{x}\)
and Q = \(\frac{e^x}{x}\)
I.F. = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x = x
and general solution be given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
y . x = ∫ \(\frac{e^x}{x}\) . x dx + C
= ex + C
⇒ y = \(\frac{e^x}{x}+\frac{c}{x}\)

Question 46.
Solution of the differential equation \(\frac{d y}{d x}\) + ay = emx is
(a) (a + m) y = emx + Ce– ax
(b) y = emx + Ce-ax
(c) (a + m) y = emx + C
(d) yeax = memx + C
Solution:
(a) (a + m) y = emx + Ce– ax

Given diff. eqn. be,
\(\frac{d y}{d x}\) + ay = emx
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = a ; Q = emx
∴ I.F. = e∫ P dx
= e∫ a dx
= eax
and soln, be given by
y . e∫ P dx = ∫ Q . e∫ P dx + C
y . eax = ∫ emx . eax dx + C
= ∫ e(m + a) x dx + C
= \(\frac{e^{(m+a) x}}{m+a}\) + C
⇒ (m + a) y = emx + C’ e ax

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 47.
Solution of the differential equation \(\frac{d y}{d x}+\frac{y}{x}\) = sin x is
(a) x (y + cos x) = sin x + C
(b) x(y – cos x) = sin x + C
(c)x (y + cos x) = cos x + C
(d) none of these
Solution:
(a) x (y + cos x) = sin x + C

Given diff. eqn be,
\(\frac{d y}{d x}+\frac{y}{x}\) = sin x
which is L.D.E. of the from \(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x}\) and Q = sin x
∴ I.F. = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x
= x
and solution is given by
y . e∫ P dx = Q . ∫ e∫ P dx dx + c
⇒ y.x = ∫ sin x . x dx + c
⇒ xy = [- x cos x + sin x] + c
⇒ x (y + cos x) = sin x + c
which is the reqd. solution.

Question 48.
General solution of the differential equation cos x sin y dx + sin x cosy dy = 0 is
(a) sin x = C sin y
(b) sin x siny = C
(e) sin x + sin.y C
(d) cos x cosy = C
Solution:
(b) sin x siny = C

Given diff. eqn. can be written as;
\(\frac{\cos x d x}{\sin x}+\frac{\cos y d y}{\sin y}\) = 0
On integrating both sides ; we have
\(\int \frac{\cos x}{\sin x} d x+\int \frac{\cos y}{\sin y} d y\) = log C
⇒ log |sin x| + log |sin y| = log C
⇒ log |sin x sin y| = log C
⇒ sin x sin y = ± C = A

Question 49.
The solution of the differential equation \(\frac{d y}{d x}\) = y = e-x, y(0) = 0, is
(a) y = ex (x – 1)
(b) y = xe-x
(c) y = xe-x + 1
(d) y = (x + 1) e-x
Solution:
(b) y = xe-x

Given diff. eqn. be,
\(\frac{d y}{d x}\) + y = e-x
which is L.Ð.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q
where P = 1 and Q = e-x
∴ I.F = e∫ P dx
= e∫ 1 dx
= ex
and soln. be given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y ex = ∫ e– x .ex dx + C
= ∫ 1 dx + C
= x + C ………………(1)
Given y(0) = 0 i.e.
when x = 0
⇒ y = 0
∴ from (1) ;
0 = (0 + C)
⇒ C = 0
Thus eqn. (1) becomes;
y = x e– x

Question 50.
The solution of the differential equation \(\frac{d y}{d x}\) – y = 1, y(0) = 1, is
(a) xy = e– x
(b) xy = – e– x
(c) xy = – 1
(d) y = 2 ex – 1
Solution:
(d) y = 2 ex – 1

Given diff. eqn. be
\(\frac{d y}{d x}\) – y = 1
which is L.D.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = – 1 and Q = 1
∴ I.F = e∫ P dx
= e– ∫ dx
= e– x
and general soln, be given by
⇒ y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ ye– x = ∫ 1 . e– xdx + C
⇒ ye– x = \(\frac{e^{-x}}{-1}\) + C
⇒ y = – 1 + Cex …………………(1)
Given y (0) = 1
i.e. When x = 0 ⇒ y = 1
⇒ 1 = – 1 + C
⇒ C = 2
from (1) ;
y = – 1 + 2ex

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 51.
Solution of the differential equation x dy -y dx = 0 represents a family of
(a) rectangular hyperbolas
(b) parabolas with vertex at origin
(c) straight lines passing through origin
(d) circles whose centre is at origin
Solution:
(c) straight lines passing through origin

Given diff. eqn. can be written as:
\(\frac{d y}{y}-\frac{d x}{x}\) = 0 ;
On integrating ; we have
\(\int \frac{d y}{y}-\int \frac{d x}{x}\) = log C
⇒ log y – log x = log C
⇒ log \(\frac{y}{x}\) = log C
⇒ y = Cx
which represents a family of straight lines passing through origin.

Question 52.
Solution of the differential equation y \(\frac{d y}{d x}\) + x = 0 represents a family of
(a) hyperbola
(b) parabolas
(c) ellipses
(d) circles
Solution:
(d) circles

Given diff. eqn. can be written as;
y dy + x dy = 0 ;
on integrating ; we have
∫ y dy + ∫ x dx = 1
⇒ \(\frac{y^2}{2}+\frac{x^2}{2}=\frac{C}{2}\)
⇒ x2 + y2 = C
which represents a family of circles.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs

Question 53.
The solution of the differential equation 2x \(\frac{d y}{d x}\) – y = 3 represents
(a) circles
(b) straight lines
(c) ellipses
(d) parabolas
Solution:
(d) parabolas

Given diff. eqn be, 2x \(\frac{d y}{d x}\) – y = 3
⇒ \(\frac{d y}{d x}-\frac{y}{2 x}=\frac{3}{2 x}\)
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations MCQs 6

on squaring; we have
(y + 3)2 = c2x,
which represents a right handed parabolas with vertex (0, – 3).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Utilizing ML Aggarwal Class 12 ISC Solutions as a study aid can enhance exam preparation.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 1.
Verify that the function y = eax (c1 cos bx + c2 sin bx), where c1, c2 are arbitrary constants is a solution of the differential equation \(\frac{d^2 y}{d x^2}\) – 2a \(\frac{d y}{d x}\) + (a2 + b2) y = 0. (NCERT)
Solution:
Given,
y = eax (c1 cos bx + c2 sin bx) …………….(1)
Diff. (1) w.r.t. x we have
\(\frac{d y}{d x}\) = aeax (c1 cos bx + c2 sin bx) + eax (- c1 b sin bx + c2 b cos bx)
⇒ \(\frac{d y}{d x}\) = ay + beax (- c1 sin bx + c2 cos bx)
Diff. eqn. (2) w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = a \(\frac{d y}{d x}\) + b {eax {- c1 b cos bx – c2 b sin bx) + (- c1 sin bx + c2 cos bx) aeax}
⇒ \(\frac{d^2 y}{d x^2}\) = a \(\frac{d y}{d x}\) – b2y + a \(\frac{d y}{d x}\) – a2y
[using eqn. (1) and (2)]
⇒ \(\frac{d^2 y}{d x^2}\) – 2a \(\frac{d y}{d x}\) + (a2 + b2) y = 0
which is the given diff. eqn.
Hence, y = eax (C1 cos bx + C2 sin bx) be the solution of given diff. eqn.

Question 1 (old).
Show that y = \(\frac{c-x}{1+c x}\), is arbitrary constant, is a solution of the differential equation (1 + x2) \(\frac{d y}{d x}\) + (1 + y2) = 0.
Solution:
Given y = \(\frac{C-x}{1+C x}\)
⇒ y (1 + Cx) = C – x
⇒ C (xy – 1) = – x – y
⇒ C = \(\frac{x+y}{1-x y}\) ……………..(1)
Diff. (1) w.r.t. x; we have
\(\frac{(1-x y)\left(1+\frac{d y}{d x}\right)+(x+y)\left(x \frac{d y}{d x}+y\right)}{(1-x y)^2}\) = 0
⇒ (1 + x2) \(\frac{d y}{d x}\) + 1 + y2 = 0, which is given diff. eqn.
Thus, y = \(\frac{c-x}{1+c x}\) be the required solution of given diff. eqn.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 2.
Form the differential equation of the family of curves represented by \(\sqrt{1-x^2}+\sqrt{1-y^2}\) = a (x – y), a being parameter.
Solution:
Given family of curves represented by
\(\sqrt{1-x^2}+\sqrt{1-y^2}\) = a (x – y)
put x = sin θ
⇒ θ = sin-1 x
and y = sin Φ
Φ = sin-1 y
∴ From (1) ; we have
\(\sqrt{1-\sin ^2 \theta}+\sqrt{1-\sin ^2 \theta}\) = a (sin θ – sin Φ)
⇒ cos θ + cos Φ = a (sin Φ – sin Φ)
⇒ \(2 \cos \frac{\theta+\phi}{2} \cos \frac{\theta-\phi}{2}=2 a \cos \frac{\theta-\phi}{2} \sin \frac{\theta+\phi}{2}\)
⇒ cot \(\frac{\theta+\phi}{2}\) = a
⇒ θ + Φ = 2 cot-1 a
⇒ sin-1 x + sin-1 y = 2 cot-1 a
Diff. both sides w.r.t. x; we have
\(\frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-y^2}} \frac{d y}{d x}\) = 0
which gives the required differential equation.

Question 3.
Obtain the differential equation of the family of straight lines which are at a fixed distance p from the origin.
Solution:
Now, equation of family of straight lines which are at a fixed distance p from the origin is given by
x cos α + y sin α = p ………………..(1)
where α be the parameter
On differentiating eqn. (1) w.r.t. x; we have
cos α + sin α \(\frac{d y}{d x}\) = 0 ……………..(2)
eqn. (1) – x × eqn. (2) ; we have
sin α (y – x \(\frac{d y}{d x}\)) = p ……………….(3)
eqn. (1) × \(\frac{d y}{d x}\) – eqn. (2) × y ; we have
(x \(\frac{d y}{d x}\) – y) cos α = p \(\frac{d y}{d x}\) ………………(4)
On squaring and adding eqn. (3) and eqn. (4) ; we have
(xy1 – y)2 (cos2 α + sin2 α) = p2 (1 + (\(\frac{d y}{d x}\))2]
⇒ (y – xy1)2 = p2 (1 + y12)
which gives the required differential eqn.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 4.
(tan2 x + 2 tan x + 5) = 2 (1 + tan x) sec2 x.
Solution:
Given, (tan2 x + 2 tan x + 5) = 2 (1 + tan x) sec2 x
⇒ dy = \(\frac{2(1+\tan x) \sec ^2 x}{\tan ^2 x+2 \tan x+5}\) dx
[after variable separation]
On integrating ; we have
∫ dy = ∫ \(\frac{2(1+\tan x) \sec ^2 x d x}{\tan ^2 x+2 \tan x+5}\) + C ……………….(1)
put tan2 x + 2 tan x + 5 = t
⇒ (2 tan x sec2 x + 2 sec2 x) dx = dt
⇒ 2 sec2 x (1 + tan x) dx = dt

Question 5.
(i) x (y2 – a) dx + y (1 + x) dy = 0
(ii) cos x (1 + cos y) dy – sin y (1 + sin x) dx = 0
Solution:
(i) Given, x (y2 – a) dx + y (1 + x) dy = 0
⇒ \(\frac{x d x}{1+x}+\frac{y d y}{y^2-a}\) = 0
[after variable separation]
On integrating ; we have
\(\int \frac{1+x-1}{1+x} d x+\int \frac{y d y}{y^2-a}\) = C
⇒ \(\int\left[1-\frac{1}{1+x}\right] d x+\frac{1}{2} \int \frac{2 y d y}{y^2-a}\) = C
⇒ x – log |1 + x| + \(\frac{1}{2}\) log |y2 – a| = C
which gives the required solution.

(ii) Given, cos x (1 + cos y) dy – sin y (1 + sin x) dx = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 12

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 5 (old).
Find the differential equation of all parabolas having their axis of symmetry as the x-axis.
Solution:
The equation of all parabolas having axis of symmetry as the x-axis be given by
(y – 0)2 = 4a (x – h) ……………..(1)
where a, h are arbitrary constants
Diff. eqn. (1) both sides w.r.t. x; we have
2yy1 = 4a
⇒ yy1 = 2a ……………..(2)
again differentiating eqn. (2) w.r.t. x, we get
yy2 + y1 = 0
which gives the required differential equation.

Question 6.
(i) \(\frac{d y}{d x}\) = x5 tan-1 (x3)
(ii) a (x \(\frac{d y}{d x}\) + 2y) = xy \(\frac{d y}{d x}\)
Solution:
(i) Given, \(\frac{d y}{d x}\) = x5 tan-1 (x3)
⇒ dy = x5 tan-1 (x3) dx
On integrating ; we have
∫ dy = ∫ x5 tan-1 (x3) dx
put x3 = t
⇒ 3x2 dx = dt
y = ∫ t tan-1 t \(\frac{d t}{3}\) + C

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 12

(ii) Given a (x \(\frac{d y}{d x}\) + 2y) = xy \(\frac{d y}{d x}\)
⇒ x (a – y) \(\frac{d y}{d x}\) = – 2 ay
\(\frac{(a-y)}{a y}=-2 \frac{d x}{x}\)
On integrating ; we have
\(\frac{1}{a} \int\left[\frac{a}{y}-1\right] d y=-2 \int \frac{d x}{x}+\mathrm{C}\)
⇒ \(\frac{1}{a}\) [a log |y| – y] = – 2 log |x| + C
⇒ log |x2y| = C + \(\frac{y}{a}\)
⇒ a log |yx2| = y + A
which gives the required general solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 7.
cos x cos y \(\frac{d y}{d x}\) + sin x sin y = 0.
Solution:
Given, cos x cos y \(\frac{d y}{d x}\) + sin x sin y = 0
\(\frac{\cos y}{\sin y} d y+\frac{\sin x}{\cos x} d x\) = 0
On integrating ; we have
\(\int \frac{\cos y}{\sin y} d y+\int \frac{\sin x}{\cos x} d x\) = log C
⇒ log |sin y| – log |cos x| = log C
⇒ |sin x| = C |cos x|
⇒ sin y = A cos x ; where ± C = A
which gives the required general solution.

Question 8.
Find the particular solution of (1 – x) dy – (1 + y) dy = 0, it being given that y = 4 when x = 2.
Solution:
Given, (1 – x) dy – (1 + y) dy = 0
⇒ \(\frac{d y}{1+y}-\frac{d x}{1-x}\) = 0
On integrating; we have
\(\int \frac{d y}{1+y}-\int \frac{d x}{1-x}\) = log C
⇒ log (1 + y) + log (1 – x) = log C
⇒ (1 + y) (1 – x) = C
Thus, eqn. (1) gives the general solution of given differential eqn.
Given y = 4 when x = 2
∴ from (1) ; we have
5(- 1) = C
⇒ C = – 5
Thus from eqn. (1) ; we have
(1 + y) (1 – x) + 5 = 0
which gives the required particular solution of given diff. eqn.

Question 9.
Find the particular solution of the differential equation \(e^{\frac{d y}{d x}}\) = x + 1, given that y = 3 when x = 0.
Solution:
Given \(e^{\frac{d y}{d x}}\) = log (x + 1)
\(\frac{d y}{d x}\) = log (x + 1) dx ;
on integrating ∫ dy = ∫ log (x + 1) . 1 dx
⇒ y = log (x + 1) . x – \(\int \frac{1}{x+1}\) x dx
⇒ y = x log |(x + 1)| – ∫ \(\left[1-\frac{1}{x+1}\right]\) dx + c
⇒ y = x log (x + 1) – x + log (x + 1) + C
⇒ y = (x + 1) log |(x + 1)| – x + c ………….(1)
Given y = 3 when x = 0
∴ from (1) ; we have
3 = log 1 – 0 + c
⇒ c = 3
From (1) ; we have
∴ y = (x + 1) log |x + 1| – x + 3
which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 10.
Find the equation of the curve passing through the point (0, \(\frac{\pi}{4}\)) whose differential equation is sin x cos y dx + cos x sin y dy = 0. (NCERT)
Solution:
Given differential equation be,
sin x cos y dx + cos x sin y dy = 0
⇒ \(\frac{\sin x}{\cos x}\) dx + \(\frac{\sin y}{\cos y}\) dy = 0
On integrating ; we have
\(\int \frac{\sin x d x}{\cos x}+\int \frac{\sin y d y}{\cos y}\) = – log C
⇒ – log |cos x| – log |cos y| = – log C
⇒ log |cos x cos y| = log C
⇒ cos x cos y = ± C = A ……………(1)
Since the curve (1) passes through (0, \(\frac{\pi}{4}\)).
i.e. When x = 0, y = \(\frac{\pi}{4}\)
∴ from (1) ;
\(1 \times \frac{1}{\sqrt{2}}\) = A
⇒ A = \(\frac{1}{\sqrt{2}}\)
Thus eqn. (1) gives ; cos x cosy = \(\frac{1}{\sqrt{2}}\) which gives the required eqn. of curve.

Question 11.
In a bank principal increases at the rate of 5 % per year. In how many years Rs. 1000 double itself. (NCERT)
Solution:
Let P be the principal at any instant t
Then \(\frac{d \mathrm{P}}{d t}=\frac{5}{100} \mathrm{P}\)
⇒ \(\frac{\mathrm{dP}}{\mathrm{P}}=\frac{d t}{20}\)
on integrating; we have
log P = \(\frac{1}{20}\) t + c …………….(1)
initially at t = 0 ; P = 1000
∴ from (1) ; we have
log 1000 = \(\frac{1 \times 0}{20}\) + c
⇒ c = log 1000
∴ from eqn (1) ; we have
log P = \(\frac{t}{20}\) + log (1000)
log \(\frac{\mathrm{P}}{1000}=\frac{t}{20}\) …………………..(2)
Let t = t1 when P = 2000
∴ from eqn. (2); we have,
log \(\left(\frac{2000}{1000}\right)=\frac{t_1}{20}\)
⇒ t1 = 20 loge 2
Hence, the amount will be double after 20 loge 2 years.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 12.
(i) x (x – y) dy + y2 dx = 0
(ii) x3 \(\frac{d y}{d x}\) = y3 + y2 \(\sqrt{y^2-x^2}\), x > 0
Solution:
(i) Given, x (x – y) dy + y2 dx = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 1

(ii) Given, x3 \(\frac{d y}{d x}\) = y3 + y2 \(\sqrt{y^2-x^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 13.
(i) \(\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}\) = 1, x > 0
(ii) e-y sec2 y dy = dx + x dy
Solution:
(i) Given, \(\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}\) = 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 4

(ii) Given, e-y sec2 y dy = dx + x dy
⇒ (e-y sec2 y – x) dy = dx
⇒ \(\frac{d x}{d y}\) + y = e-y sec2 y
which is L.D.E. in x and is of the form
\(\frac{d x}{d y}\) + Px = Q
where P = 1 and Q = e-y sec2 y
∴ I.F. = e∫ P dy
= e∫ dy
= ey
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ x . ey = ∫ e– y sec2 y ey dy + C
⇒ x . ey = tan y + C
⇒ x = e– y (tan y + C)

Question 14.
(i) (2x – 10y3) dy + y dx = 0, y ≠ 0
(ii) (x + tan y) dy = sin 2y dx
Solution:
(i) Given, (2x – 10y3) dy + y dx = 0
⇒ \(\frac{d x}{d y}\) + \(\frac{2 x}{y}\) – 10 y2 = 0
⇒ \(\frac{d x}{d y}\) + \(\frac{2 x}{y}\) = 10 y2
which is linear in x and its of the form
⇒ \(\frac{d x}{d y}\) + Px = Q ;
where P = \(\frac{2}{y}\)
Q = 10 y2
∴ I.F. = e∫ P dy
= \(e^{\int \frac{2}{y} d y}\)
= e2 log |y|
= elog y2
= y2
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ x . y2 = ∫ 10 y2 × y2 dy + C
⇒ xy2 = 10 + C
⇒ xy2 = 2y5 + C, which gives the required solution.

(ii) Given (x + tan y) dy = sin 2y dx

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 5

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

Question 14 (old).
In a bank principal increases at the rate of r % per year. Find the value of r if Rs. 100 double itself in 10 years (given loge 2 = 0.6931). (NCERT)
Solution:
Let P be the pnncipal at any instant t
Then \(\frac{d \mathrm{P}}{d t}=\frac{r}{100} \mathrm{P}\)
⇒ \(\frac{d \mathrm{P}}{P}=\frac{r}{100}\) dt ;
on integrating ; we get
⇒ log P = \(\frac{r}{100}\) t + c ……………..(1)
initially at t = 0, P = P0
∴ from (1) ; we have
log P0 = c
∴ from (1) ; we have
log P = \(\frac{r t}{100}\) + log P0
⇒ \(\left(\frac{p}{P_0}\right)=\frac{r t}{100}\) …………….(2)
Given P0 = 100 ; P = 200 at t = 10
∴ from (2) ; we have
⇒ \(\left(\frac{200}{100}\right)=\frac{r \times 10}{100}\)
⇒ log 2 = \(\frac{r}{10}\)
⇒ r = 10 × log 2 = 10 × 0.6931 = 6.931
Thus the required rate percent be 6.931% per annum.

Question 15.
Find the particular solutions of the following differential equations :
(i) \(\frac{d y}{d x}\) = 2xy, given that y = 1 when x = 0.
(ii) 2x2 \(\frac{d y}{d x}\) – 2xy + y2 = 0, given that y = e when x = e.
(iii) (xy – y2) dx – x2 dy = 0, given that y = 1 when x = 1.
(iv) (x2 + 1) \(\frac{d y}{d x}\) – 2xy = (x4 + 2x2 + 1) cos x, given that y = 0 When x = 0.
(v) \(\sqrt{1-y^2}\) dx = (sin-1 y – x) dy, given that y = 0 when x = 0.
(vi) \(x e^{\frac{y}{x}}-y \sin \left(\frac{y}{x}\right)+x \sin \left(\frac{y}{x}\right) \frac{d y}{d x}\) = 0, given that y = 0 when x = 1.
Solution:
(i) Given, \(\frac{d y}{d x}\) = 2xy
⇒ \(\frac{1}{y}\) dy = 2x dx
On integrating ; we have
log |y| = x2 + C ………………..(1)
given, y = 1 when x = 0
∴ from (1) ;
0 = 0 + C
⇒ C = 0
Thus eqn. (1) gives ;
log |y| = x2
⇒ y = ex2
[∵ y > 0]
which gives the required particular solution.

(ii) Given, 2x2 \(\frac{d y}{d x}\) – 2xy + y2 = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 6

⇒ – \(\frac{2 x}{y}\) + log |x| = C …………….(1)
When x = e, y = e
∴ from (1) ;
– \(\frac{2 e}{e}\) + log |e| = C
⇒ – 2 + 1 = C
⇒ C = – 1
Thus, eqn. (1) becomes ;
– \(\frac{2 x}{y}\) + log |x| = – 1
⇒ 1 + log |x| = \(\frac{2 x}{y}\)
⇒ y = \(\frac{2 x}{1+\log |x|}\) be the required particular solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

(iii) Given, (xy – y2) dx – x2 dy = 0
⇒ \(\frac{d y}{d x}=\frac{x y-y^2}{x^2}\) …………..(1)
Also, \(\frac{d y}{d x}=\frac{y}{x}-\left(\frac{y}{x}\right)^2=\phi\left(\frac{y}{x}\right)\)
Thus, eqn. (1) be a homogeneous differential eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 7

(iv) Given diff. eqn. can be written as ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 8

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

(v) Given \(\sqrt{1-y^2}\) dx = (sin-1 y – x) dy
⇒ \(\frac{d x}{d y}+\frac{x}{\sqrt{1-y^2}}=\frac{\sin ^{-1} y}{\sqrt{1-y^2}}\)
which is L.D.E. in x and is of the form

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 9

⇒ xesin-1 y = ∫ t et dt + C
= (t – 1) et + C
⇒ xesin-1 y = (sin-1 y – 1) esin-1 y + C ……………..(1)
When x = 0, y = 0
∴ from (1) ;
0 = (0 – 1) + C
⇒ C = 1
∴ from (1) ; we get
xesin-1 y = (sin-1 y – 1) esin-1 y + 1
⇒ x = sin-1 y – 1 + e– sin-1 y
which gives the required particular solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test

(vi) Given diff. eqn. can be written as

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Chapter Test 10

∴ I = – sin v e-v + [- cos v e-v – ∫ sin v e-v dv]
⇒ 2I = – (sin v + cos v) e-v
∴ from (2) ; we get
\(\frac{-(\sin v+\cos v) e^{-v}}{2}\) = – log |x| + C
⇒ e-y/x (sin \(\frac{y}{x}\) + cos \(\frac{y}{x}\)) = 2 log |x| + A …………….(3)
where A = – 2C
When x = 1, y = 0
∴ from (3) ; we have
1 (0 + 1) = 2 × 0 + A
⇒ A = 1
Thus eqn. (4) becomes ;
e-y/x (sin \(\frac{y}{x}\) cos \(\frac{y}{x}\)) = 2 log |x| + 1
which gives the required particular solution of given diff. equation.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

The availability of step-by-step ML Aggarwal Class 12 Solutions ISC can make challenging problems more manageable.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 1.
The surface area of a balloon being inflated changes at a constant rate. If initially, its radius is 3 units and after 2 seconds, it is 5 units, find the radius after t seconds.
Solution:
Let r be the radius of bal loon.
Then surface area of balloon = 4πr²
according to given condition, we have
\(\frac{d}{d t}\) (4πr²) = K (say)
⇒ r dr = \(\frac{K}{8 \pi}\) dt ;
on integrating
⇒ \(\frac{r^2}{2}=\frac{K}{8 \pi} t+\mathrm{C}\) ………………….(1)
initially t = 0 ; r = 3 units
∴ from (1) ;
\(\frac{9}{2}\) = C
Thus eqn. (1) gives ;
\(\frac{r^2}{2}=\frac{K}{8 \pi} t+\frac{9}{2}\)
⇒ r2 = \(\frac{K}{4 \pi}\) + 9 ………………..(2)
Also when t = 2 seconds, r = 5 units
∴ from (2) ; we have
25 = \(\frac{K}{4 \pi}\) × 2 + 9
⇒ 16 = \(\frac{K}{2 \pi}\)
⇒ K = 32 π
∴ from (2) ;
r2 = \(\frac{32 \pi}{4 \pi}\) t + 9
= 8t + 9
⇒ r = \(\sqrt{8 t+9}\)
which is required radius after time t.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 2.
The surface area of a balloon being inflated changes at a rate proportional to time. If initially its radius is 1 unit and after I second ¡t is 3 units, find its radius after time t.
Solution:
Let r be the radius after time t
Then \(\frac{d}{d t}\) (4πr²) ∝ t
⇒ \(\frac{d}{d t}\) (4πr²) = Kt
where K be the constant of proportionality
8πr \(\frac{d r}{d t}\) = Kt
⇒ r dr = \(\frac{K}{8 \pi}\) t dt
On integrating ; we have
\(\frac{r^2}{2}=\frac{K}{8 \pi} \times \frac{t^2}{2}+\mathrm{C}\) …………….(1)
initially t = 0, r = 1 units
∴ from (1) ;
\(\frac{1}{2}=\frac{\mathrm{K}}{16 \pi}\) × 0 + C
⇒ C = \(\frac{1}{2}\)
∴ from (1) ; we have
\(\frac{r^2}{2}=\frac{K}{16 \pi} t^2+\frac{1}{2}\) …………………….(2)
\(r^2=\frac{\mathrm{K}}{8 \pi} t^2+1\)
When t = 1 second ;
r = 3 units
∴ from (2) ;
9 = \(\frac{K}{8 \pi}\) + 1
K = 64 π
∴ from (2) ;
r2 = \(\frac{64 \pi}{8 \pi}\) t2 + 1
r = \(\sqrt{8 t^2+1}\) units
which is the required radius after time t.

Question 3.
A population grows at the rate of 2 % per year. How long does it take for the population to double itself?
Solution:
Let P0 be the population initially i.e. at t = 0
and P be the population after t years.
According to given condition, we have
\(\frac{d P}{d t}\) = 2% of P
\(\frac{d P}{d t}\) = \(\frac{2}{100}\) P
= \(\frac{t}{50}\) P
On integrating ; we have
log P = \(\frac{t}{50}\) + C ………………(1)
When t = 0; P = P0
∴ from (1) ;
log P0 = C
Thus eqn. (1) gives;
log P = \(\frac{t}{50}\) + log P0
⇒ log \(\frac{\mathrm{P}}{\mathrm{P}_0}=\frac{t}{50}\) ……………..(2)
Let t = t1
When P = 2P0
∴ from (2) ;
log \(\frac{2 \mathrm{P}_0}{\mathrm{P}_0}=\frac{t_1}{50}\)
⇒ t1 = 50 log 2
Hence it takes 50 log 2 years for the population to grow 2 times.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 4.
It is given that the rate at which some bacteria multiply is proportional to the instantaneous number present. If the original number of bacteria doubles in 2 hours, in how many hours will it be five times ?
Solution:
Let P0 be the number of bacteria present initially
i.e. t = 0 and P be the bacteria present after t years.
Then \(\frac{d P}{d t}\) ∝ P
⇒ \(\frac{d P}{d t}\) = KP ;
where K = constant of proportionality
on integrating ; we have
∫ \(\frac{d P}{P}\) = K ∫ dt
⇒ log P = Kt + C …………….(1)
When t = 0 ; P = P0
∴ from (1) ;
log P0 = C
Thus eqn. (1) gives ;
log \(\frac{\mathrm{P}}{\mathrm{P}_0}\) = Kt ……………..(2)
also P = 2P0 ; t = 2 hours
∴ from (2);
log \(\frac{2 \mathrm{P}_0}{\mathrm{P}_0}\) = 2K
⇒ K = \(\frac{1}{2}\) log 2
Thus eqn. (2) gives;
log \(\frac{\mathrm{P}}{\mathrm{P}_0}=\left(\frac{1}{2} \log 2\right) t\) ………………(3)
Let t = t1 when P = 5P0
∴ eqn. (3) gives ;
log \(\frac{5 \mathrm{P}_0}{\mathrm{P}_0}\) = (\(\frac{1}{2}\) log 2) t1
⇒ t1 = \(\frac{2 \log 5}{\log 2}\) hours
Hence \(\frac{2 \log 5}{\log 2}\) hours, bacteria will be five times the no. of bacteria present initially.

Question 5.
Assume that a spherical rain drop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the rain drop at any time.
Solution:
Let r be the radius of rain drop after timer.
Then according to given condition,
\(\frac{d}{d t}\left(\frac{4}{3} \pi r^3\right)\) ∝ 4πr²
⇒ \(\frac{d}{d t}\left(\frac{4}{3} \pi r^3\right)\) = – K 4πr²
where K be the constant of proportionality
\(\frac{4 \pi}{3} \times 3 r^2 \frac{d r}{d t}\) = – K 4πr² ;
⇒ \(\frac{d r}{d t}\) = – K
on integrating
⇒ dr = – K ∫ dt + C
⇒ r = – Kt + C …………..(1)
When t = 0 : r = 3
∴ from (1) ;
3 = C
∴ eqn. (1) gives;
r = – Kt + 3 ………………(2)
further when t= 1 hour, r = 2 mm
∴ from (2) ;
2 = – K + 3
⇒ K = 1
putting the value of K in eqn. (2); we get
r = – t + 3 ; 0 < t < 3
Which gives the required radius of rain drop atany time t.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 5 (old).
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the mind loses half its moisture the first hour, when will it have lost 90% moisture, whether conditions remaining the same ?
Solution:
Let M0 be the moisture content initially at t = 0
and M be the moisture constant after time t hours.
Then according to given condition, we have
\(\frac{d \mathrm{M}}{d t}\) ∝ M
\(\frac{d \mathrm{M}}{d t}\) = – KM
where K = constant of proportionality
\(\frac{d \mathrm{M}}{\mathrm{M}}\) = – K dt [after variable separation]
∫ \(\frac{d \mathrm{M}}{\mathrm{M}}\) = ∫ – K dt + C [on integrating]
⇒ log M = – Kt + C …………………..(1)
When t = 0 ;
M = M0
∴ from (1) ;
log M0 = C
∴ eqn. (1) gives ;
log M = – Kt + log M0
⇒ log \(\frac{\mathrm{M}}{\mathrm{M}_0}\) = – Kt ………………..(2)
When t = 1, M = \(\frac{1}{2}\) M0
∴ from (1) ;
log \(\left(\frac{\frac{1}{2} M_0}{M_0}\right)\) = – K × 1
⇒ – K = log \(\frac{1}{2}\)
⇒ – K = log 1 – log 2
⇒ – K = – log 2
⇒ K = log 2
putting the value of K in eqn. (2) ; we have
log \(\left(\frac{M}{M_0}\right)\) = – (log 2) t ………………….(3)
When the sheet loses 90% of the moisture.
i.e. When M = M0 – \(\frac{90}{100}\) M0
= \(\frac{\mathrm{M}_0}{10}\) t = t1
∴ from (3) ;
log \(\left(\frac{\mathrm{M}_0}{10 \mathrm{M}_0}\right)\) = – (log 2) t1
⇒ t1 = \(\frac{1}{-\log 2} \log \frac{1}{10}\)
= \(\frac{\log 1-\log 10}{-\log 2}\)
= \(\frac{\log 10}{\log 2}\)

Question 6.
The acceleration of a particle moving along the line OX at any time t seconds is given by a = 2 (t – 5). If at t = 0, the velocity and displacement of the particle are 9 m/sec and 18 m respectively, find its velocity v and displacement x at any time t seconds. What is the velocity at t = 1 sec?
Solution:
Given acceleration of particle at any time t is given by
a = \(\frac{d^2 x}{d t^2}\)
= 2 (t – 5)
= \(\frac{d v}{d t}\) ……………….(1)
where v be the velocity of particle at any time t.
On integrating eqn. (1) ; we have
v = 2 \(\left(\frac{t^2}{2}-5 t\right)\) + C ………………(2)
given at t = 0 ; v = 9 m/sec
∴ from (2) ;
9 = 0 + C
⇒ C = 9
Substituting the value of C in eqn. (2) ; we have
\(\frac{d x}{d t}\) = v = t2 – 10t + 9 ………………(3)
where x be the displacement of particle at any time t.
On integrating both sides of eqn. (3) ; we have
x = \(\frac{t^3}{3}-10 \frac{t^2}{2}+9 t+C_1\) ………………(4)
Further at t = 0; x = 18 m
∴ from (4) ;
18 = C1
Thus, eqn. (4) gives;
x = \(\frac{t^3}{3}\) – 5t2 + 9t + 18 ………………(5)
From (3) ;
(v)t = 1 = 1 – 10 + 9 = 0 m/sec.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 7.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is \(\frac{y-1}{x^2+x}\). (NCERT Exemplar)
Solution:
Given slope of tangent to the curve at any point (x, y) = \(\frac{y-1}{x^2+x}\)
Also, slope of tangent to curve at any point (x, y) = \(\frac{d y}{d x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8 1

which gives the family of curves satisfied by diff. eqn. (1).
Now curve given by eqn. (2) passes through (1, 0).
i.e. when x = 1, y = 0
∴ from (2) ;
– 1 = \(\frac{C}{2}\)
⇒ C = – 2
putting the value of C in eqn. (2); we have
(y – 1) (x + 1) + 2x = 0, which is the required eqn. of curve.

Question 8.
Find the equation of a curve passing through the point (2, 1) if the slope of the tangent to the curve at any point (x, y) is \(\frac{x^2+y^2}{2 x y}\).
Solution:
We know that, slope of tangent at any point (x, y) to the curve = \(\frac{d y}{d x}\)
Also, slope of tangent to curve at any point (x, y) = \(\frac{x^2+y^2}{2 x y}\)
∴ \(\frac{d y}{d x}=\frac{x^2+y^2}{2 x y}\) ………………..(1)
which is homogeneous differential equation
Put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8 2

which represents the family of curves satisfied by given differential equation (1).
Since the particular member of the family of curve passes through the point (2, 1);
we have
12 – 22 = C × 2
⇒ 2C = – 3
⇒ C = – \(\frac{3}{2}\)
putting the value of C in eqn. (2); we get
(y2 – x2) = – \(\frac{3 x}{2}\)
⇒ 2 (x2 – y2) = 3x,
which is the required equation of curve.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 8 (old).
Find the equation of a curve passing through the point (1, 1) whose differential equation ¡s x dy = (2x2 + 1) dx, x ≠ 0. (NCERT)
Solution:
Given differential eqn. can be written as
\(\frac{d y}{d x}=\frac{2 x^2+1}{x}\) ;
on integrating
y = ∫ \(\frac{2 x^2+1}{x}\) dx + C
⇒ y = \(\frac{2 x^2}{2}\) + log |x| + C …………….(1)
Now (1) represents family of curves.
Now the curve passes through (I, 1)
∴ from (1) ;
1 = 1 + C
⇒ C = 0
∴ eqn.(1) gives ;
y = x2 + log |x| istherequired particular solution.

Question 9.
Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point. (NCERT)
Solution:
We know that slope of tangent at any poiont (x, y) of the curve = \(\frac{d y}{d x}\)
also according to given condition, we have
\(\frac{d y}{d x}\) = x + y
⇒ \(\frac{d y}{d x}\) – y = x
which is linear differential equation of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = – 1 and Q = x
∴ I.F. = e∫ P dx
= e∫ – 1 dx
= e– x
and solution is given by
ye∫ P dx = ∫ Q . e∫ P dx dx + c
⇒ ye– x = ∫ x e– x dx + c
⇒ y e– x = [- x e– x – e– x] + c
⇒ y = – (x + 1) + cex ……………………(1)
it is given that curve given by eqn (1) passes through (0, 0)
i.e. when x = 0 ; y = 0
∴ from (1) ; we have
0 = – (0 + 1) + c
⇒ c = 1
Thus from eqn. (1) ; we have
y = – x – 1 + ex
⇒ x + y = ex – 1
which gives the required equation of curve.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 10.
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point (x, y) on the curve exceeds the slope of the tangent to the curve at the point by 5. (NCERT)
Solution:
We know that,
slope of tangent to curve at any point (x,y) = \(\frac{d y}{d x}\)
according to given condition, we have
\(\frac{d y}{d x}\) + 5 = x + y
⇒ \(\frac{d y}{d x}\) – y = x – 5
which is linear duff. eqn. in y and is of the form \(\frac{d y}{d x}\) + Py = Q
where P = – 1 and Q = x – 5
⇒ IF. = e∫ P dx
= e∫ – dx
= e– x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ ye-x = ∫ (x – 5) e– x dx + C
⇒ ye– x = (x – 5) e– x – e– x + C
⇒ ye– x = – (x – 4) e– x + C
⇒ y = – (x – 4) + C e– x …………….(1)
Since the curve passing through the point (0, 2)
∴ eqn. (1) passes through (0, 2).
i.e. when x = 0 ; y = 2
∴ from (1) ;
2 = – (0 – 4) + C
⇒ C = – 2
Thus eqn. (1) gives ;
y = – (x – 4) – 2 ex
which gives the required eqn. of curve.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.8

Question 10 (old).
Find the equation of a curve passing through the point (- 2, 3) given that the slope of the tangent to the curve at any point (x, y) is \(\frac{2 x}{y^2}\). (NCERT)
Solution:
Given slope of tangent to curve at any point (x, y) = \(\frac{2 x}{y^2}\)
Also, slope of tangent to curve at any point (x, y) = \(\frac{d y}{d x}\) ……………….(1)
∴ \(\frac{d y}{d x}=\frac{2 x}{y^2}\)
⇒ ∫ y2 dy = ∫ 2x dx + C
On integrating; we have
∫ y2 dy = ∫ 2x dx + c
⇒ \(\frac{y^3}{3}\) = x2 + C ………………….(2)
So eqn. (2) represents the family of curves satisfied by diff eqn. (1).
Now given curve (2) passes through (- 2, 3),
i.e., when x = – 2, y = 3
∴ from (2) ;
9 = 4 + C
⇒ C = 5
Thus, from (2) gives ;
⇒ \(\frac{y^3}{3}\) = x2 + 5
⇒ y3 = 3x2 + 15, which is the required equation of curve.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Students often turn to ML Aggarwal Class 12 Solutions to clarify doubts and improve problem-solving skills.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

short answer type questions (1 to 5):

Question 1.
Which of the following equations are linear differential equations of first order in y?
(i) \(\frac{d y}{d x}\) + 3y = sin x
(ii) x2 \(\frac{d y}{d x}\) – 2xy = x3 + 2x2 – 5
(iii) x log x dy + (3y – 5 log x) dx = 0
(iv) y \(\frac{d y}{d x}\) + 5x = y cos x.
Solution:
(i) Given diff. eqn. be,
\(\frac{d y}{d x}\) + 3y = sin x
which is of the form, \(\frac{d y}{d x}\) + Py = Q
where P = 3 and Q = sin x
and both are functions of x-alone.
Thus given diff. eqn. is linear diff. eqn. in y of 1st order.

(ii) Given diff. eqn. can be written as
\(\frac{d y}{d x}-\frac{2}{x} y=\frac{x^3+2 x^2-5}{x^2}\) ……………….(1)
which is o fthe form \(\frac{d y}{d x}\) + Py = Q
where P = – \(\frac{2}{x}\) and Q = \(\frac{x^3+2 x^2-5}{x^2}\)
i.e. P and Q are functions of x-alone.
Hence eqn. (1) is L.D.E in y of first order.

(iii) Given diff. eqn. can be written as,
x log x dy + (3y – 5 log x) dx = 0
⇒ \(\frac{d y}{d x}+\left(\frac{3}{x \log x}\right) y=\frac{5}{x}\) ………………….(1)
which is of form \(\frac{d y}{d x}\) + Py = Q;
where P = \(\frac{3}{x \log x}\) and Q = \(\frac{5}{x}\);
and both are functions of x-alone.
Thus eqn. (1) be a L.D.E my of first order.

(iv) Given diff. eqn. can be written as,
\(\frac{d y}{d x}+\frac{5}{y} x\) = cos x
which is not of the form \(\frac{d y}{d x}\) + Py = Q
where P and Q are functions of x-alone.
Thus eqn. (1) is not a L.D.E in y of first order.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 2.
Which of the following equations are linear differential equations of first order in x?
(i) \(\frac{d x}{d y}-\frac{2 x}{y}\) = 3y3 – 5y + 1
(ii) (cos y) \(\frac{d x}{d y}\) – 2x sin y = cos y
(iii) (1 + y2) dx = (tan-1 y – 2x) dy
(iv) x2 \(\frac{d x}{d y}\) + 2x3y = 3y2 – 2.
Solution:
(i) Given diff. eqn. be,
\(\frac{d x}{d y}-\frac{2 x}{y}\) = 3y3 – 5y + 1
which is ofthe form \(\frac{d x}{d y}\) + Px = Q
where P = – \(\frac{2}{y}\) ; Q = 3y3 – 5y + 1
both are functions of y-alone.
Thus, given diff. eqn. be a L.D.E in x of first order.

(ii) Given diff. eqn. can be written as,
\(\frac{d y}{d x}+\frac{1}{2 x} y=\frac{6 x^3+5}{2 x}\)
which is ofthe form \(\frac{d x}{d y}\) + Px = Q
where P = \(\frac{1}{2 x}\)
and Q = \(\frac{6 x^3+5}{2 x}\)
∴ I.F . = e∫ P dx
= e\(\frac{1}{2 x}\)
= e\(\frac{1}{2}\) log |x|
= \(e^{\log x^{\frac{1}{2}}}\) = √x

(iii) Given diff. eqn. be.
\(\frac{d y}{d x}\) + 2y tan x = sin x.
which is L.D.E in y
and which is of the form \(\frac{d y}{d x}\) + Py = Q
Here P = 2 tan x; Q = sin x
∴ I.F. = e∫ P dx
= e∫ 2 tan x dx
= \(e^{-2 \int \frac{-\sin x d x}{\cos x}}\)
= e– 2 log |cos x|
= elog |cos x\-2
= \(\frac{1}{\cos ^2 x}\)
= sec2 x

(iv) Given diff eqn. can be written as,
\(\frac{d y}{d x}+\frac{y}{x}\) = y cot x
⇒ \(\frac{d y}{d x}\) + (\(\frac{1}{x}\) – cot x) y = 0
which is L.D.E in y
Here P = \(\frac{1}{x}\) – cot x; Q = 0
∴ I.F. = e∫ P dx
= \(e^{\int\left(\frac{1}{x}-\cot x\right) d x}\)
= elog x – log sin x
= \(e^{\log \frac{x}{\sin x}}\)
= \(\frac{x}{\sin x}\)
= x cosec x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 4.
Write an integrating factor of each of the following linear differential equation:
(i) y dx – (x + 2y2) dy = 0, y > 0
(ii) y ey dx = (y3 + 2x ey) dy, y ≠ 0
(iii) dx + x dy = (e– y log y) dy, y > 0
(iv) (1 – y2) \(\frac{d x}{d y}\) + yx = ay, |y| < 1 (NCERT)
Solution:
(i) Given diff. eqn. can he written as,
\(\frac{d x}{d y}-\frac{x}{y}\) = 2y,
which is L.D.E in x and is of the form \(\frac{d x}{d y}\) + Px = Q
where P = – \(\frac{1}{y}\) and Q = 2y
∴ I.F. = \(e^{\int-\frac{1}{y} d y}\)
= e– log y
= elog y-1
= \(\frac{1}{y}\)

(ii) Given diff. eqn. can be written as,
\(\frac{d x}{d y}=\frac{y^3+2 x e^y}{y e^y}\)
⇒ \(\frac{d x}{d y}-\frac{2}{y} x=\frac{y^2}{e^y}\)
which is L.D.E in x and is of the form
\(\frac{d x}{d y}\) + Px = Q,
where P \(\frac{2}{y}\)
and Q = \(\frac{y^2}{e^y}\)
∴ I.F = e∫ P dy
= \(e^{\int-\frac{2}{y} d y}\)
= e– 2 log y
= elog y-2
= \(\frac{1}{y^2}\)

(iii) Given diff. eqn. can be written as,
dx = (e– y log y – x) dy
⇒ \(\frac{d x}{d y}\) + Px = Q
which is L.D.E in x and is of the form
\(\frac{d x}{d y}\) + Px = Q
where P = \(\frac{y}{1-y^2}\)
and Q = \(\frac{a y}{1-y^2}\)
I.F. = e∫ P dy
= \(e^{\int \frac{y}{1-y^2} d y}\)
= \(e^{-\frac{1}{2} \int \frac{-2 y d y}{1-y^2}}\)
= \(e^{-\frac{1}{2} \log \left(1-y^2\right)}\)
= elog (1 – y2)– 1/2
= (1 – y2)-1/2
= \(\frac{1}{\sqrt{1-y^2}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 5.
(i) \(\frac{d y}{d x}+\frac{y}{x}\) = x2 (NCERT)
(ii) x \(\frac{d y}{d x}\) + 2y = x2
Solution:
(i) Given eqn. be \(\frac{d y}{d x}+\frac{y}{x}\) = x2,
it is L.D.E of Ist order
On comparing with \(\frac{d y}{d x}\) + Py = Q ; we get
P = \(\frac{1}{x}\) ; Q = x2
I.F. = e∫ P dx
= e∫ \(\frac{1}{x}\) dx
= elog x = x
Multiply given eqn. by x ; we get
x \(\frac{d y}{d x}\) + y = x3
⇒ \(\frac{d}{d x}\) (xy) = x3
on integrating; we have
xy = ∫ x3 dx + C
⇒ xy = \(\frac{x^4}{4}\) + c
⇒ y = \(\frac{x^3}{4}+\frac{C}{x}\) be the required solution.

(ii) Given diff. eqn. can be written as
\(\frac{d y}{d x}+\frac{2}{x} y\) = x
which is L.D.E. in y of first order and is of the form
\(\frac{d y}{d x}\) + Py = Q.
Here P = \(\frac{2}{x}\) ; Q = x
∴ I.F. = e∫ P dx
= \(\int_e \frac{2}{x} d x=e^{2 \log x}\)
= elog x2
= x2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . x2 = ∫ x . x2 dx + C
⇒ x2y = \(\frac{x^4}{4}\) + C
⇒ y = \(\frac{x^2}{4}\) + Cx-2
which is the required solution.

Question 5 (old).
Find the general solution of the differential equation ex dy + (y ex + 2x) dx = 0. (NCERT)
Solution:
Given differential eqn. can be written as,
ex dy + (y ex + 2x) dx = 0
⇒ ex \(\frac{d y}{d x}\) + y ex + 2x = 0
⇒ \(\frac{d y}{d x}\) + y = – \(\frac{2 x}{e^x}\)
which is LD.E in y and is of the form
\(\frac{d y}{d x}\) + Py = Q
Here P = 1 and Q = – \(\frac{2 x}{e^x}\)
∴ I.F. = e∫ P dx
= e∫ 1 . dx
= ex
and solution is given by
y . e∫ P dx = ∫ (Q . e∫ P dx) dx + C
⇒ y . ex = ∫ – \(\frac{2 x}{e^x}\) . ex dx + C
⇒ y ex = – x2 + C, which gives the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 6.
(i) \(\frac{d y}{d x}\) + 2y = 6ex
(ii) \(\frac{d y}{d x}\) + 3y = e– 2x (NCERT)
Solution:
(i) Given eqn. is \(\frac{d y}{d x}\) + 2Y = 6ex …………….(1)
Now eqn. (1) is LD.E of 1st order in y.
On comparing with \(\frac{d y}{d x}\) + Py = Q;
we have
P = 2 and Q = 6ex
∴ I.F = e∫ P dx
= e∫ 2 dx
= e2x
Multiply eqn. (1) by e2x; we get
e2x \(\frac{d y}{d x}\) + 2 e2x y = 6 e3x
⇒ \(\frac{d}{d x}\) (y e2x) = 6 e3x ;
On integrating we have
y e2x = ∫ 6 e3x dx + C
⇒ y e2x = \(\frac{6 e^{3 x}}{3}\) + C
⇒ y = 2 ex + C e-2x is the required solution.

(ii) Given eqn. is \(\frac{d y}{d x}\) + 3y = e– 2x, which ¡s L.D.E of 1st order.
On comparing with \(\frac{d y}{d x}\) + Py = Q, we have
P = 3 and Q = e– 2x
and I.F. = e∫ P dx
= e∫ 3 dx
= e3x
Multiply given eqn. by e3x, we get
e3x \(\frac{d y}{d x}\) + 3 e3x y = e– 2x . e3x
⇒ \(\frac{d}{d x}\) (e3x . y) = ex
On integrating ; we have
e3x . y = ∫ ex dx + C
⇒ e3x y = ex + C
⇒ y = e– 2x + C e– 3x

Question 7.
(i) (1 + x2) \(\frac{d y}{d x}\) = 4x2 – 2xy (ISC 2020)
(ii) \(\frac{d y}{d x}+\frac{y}{x}\) = e– x
Solution:
(i) Given differential equation can be written as ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7 1

(ii) Given \(\frac{d y}{d x}+\frac{y}{x}\) = e– x
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q,
where P = \(\frac{1}{x}\) and Q = e– x
∴ I.F. = e∫ P dx
= e∫ \(\frac{1}{x}\) dx
= elog x = x
∴ I.F. = e∫ P dx
= ∫ Q . e∫ P dx dx + C
⇒ yx = ∫ e– x . x dx + C
xy = x \(\frac{e^{-x}}{-1}\) + ∫ 1 . e– x dx + C
⇒ xy = – x e– x – e– x + C
⇒ y = \(-\left(1+\frac{1}{\dot{x}}\right) e^{-x}+\frac{\mathrm{C}}{x}\)
which gives the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 8.
(i) (x2 + 1) \(\frac{d y}{d x}\) + 2xy = \(\sqrt{x^2+4}\)
(ii) x \(\frac{d y}{d x}\) + y = 3x cos 2x , x > 0
Solution:
(i) Given, (x2 + 1) \(\frac{d y}{d x}\) + 2xy = \(\sqrt{x^2+4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7 2

(ii) Given, x \(\frac{d y}{d x}\) + y = 3x cos 2x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7 3

Question 9.
(i) x \(\frac{d y}{d x}\) – y = (x – 1) ex, x > 0
(ii) \(\frac{d y}{d x}\) + x = tan y + sec2 y
Solution:
(i) Given diff. eqn. be,
x \(\frac{d y}{d x}\) – y = (x – 1) ex
i.e., \(\frac{d y}{d x}-\frac{y}{x}=\left(\frac{x-1}{x}\right) e^x\)
which is L.D.E of the form \(\frac{d y}{d x}\) + Py = Q
where P = – \(\frac{1}{x}\)
and Q = \(\frac{(x-1)}{x}\) ex

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7 4

(ii) Given diff. eqn. be,
\(\frac{d y}{d x}\) + x = tan y + sec2 y
which is linear diff. eqn. in x and is of the form \(\frac{d y}{d x}\) + Px = Q
where P = 1 ; Q = tan y + sec2 y
∴ I.F. = e∫ P dy
= e∫ dy = ey
⇒ xey = ∫ (tan y + sec2 y) ey dy + C
= ∫ ey tan y dy + ∫ ey sec2 y dy + C
= tan y ey – ∫ sec2 y ey dy + ∫ ey sec2 y dy + C
⇒ x ey = tan y ey + C
⇒ x = tan y + C e-y

Question 10.
(i) x \(\frac{d y}{d x}\) + 2y = x cos x
(ii) (sin x) \(\frac{d y}{d x}\) + (cos x) y = cos x sin2 x
(iii) sin x \(\frac{d y}{d x}\) – y = sin x tan \(\frac{x}{2}\)
Solution:
(i) Given diff. eqn. be,
x \(\frac{d y}{d x}\) + 2y = x cos x
⇒ \(\frac{d y}{d x}\) + \(\frac{2}{x}\) y = cos x
which is L.D.E. of the form \(\frac{d y}{d x}\) + Px = Q
where P = \(\frac{2}{x}\) and Q = cos x
Now I.F. = e∫ P dx
= \(e^{\int \frac{2}{x} d x}\)
= \(e^{2 \int \frac{1}{x} d x}\)
= e2 log |x|
= x2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx + c
⇒ y . x2 = ∫ cos x . x2 dx + c
= x2 sin x – ∫ 2x sin x dx + c
⇒ yx2 = x2 sin x – 2 [- x cos x + sin x] + c
⇒ x2y = x2 sin x + 2x cos x – 2 sin x + c be the required solution.

(ii) Given eqn. be
sin x \(\frac{d y}{d x}\) + cos x . y = cos x . sin2 x
⇒ \(\frac{d y}{d x}\) + (\(\frac{\cos x}{\sin x}\)) y = cos x . sin x …………………(1)
On comparing (1) with \(\frac{d y}{d x}\) + Px = Q
P = \(\frac{\cos x}{\sin x}\) ;
Q = cos x sin x
∴I.F. = \(e^{\int \frac{\cos x d x}{\sin x}}\)
= elog sin x
= sin x
Multiply eqn. (1) by sin x ; we get
sin x \(\frac{d y}{d x}\) + y cos x = cos x sin2 x
⇒ \(\frac{d}{d x}\) (y sin x) = cos x . sin2 x ;
On integrating ; we get
y sin x = ∫ (sin x)2 cos x dx + C
= \(\frac{(\sin x)^3}{3}\) + C
⇒ y = \(\frac{\sin ^2 x}{3}+\frac{C}{\sin x}\) is the required solution.

(iii) Given diff. eqn. be,
sin x \(\frac{d y}{d x}\) – y = sin x tan \(\frac{x}{2}\)
⇒ \(\frac{d y}{d x}\) – y cosec x = tan \(\frac{x}{2}\)
On comparing with \(\frac{d y}{d x}\) + Py = Q
where P = – cosec x ;
Q = tan \(\frac{x}{2}\)
∴I.F. = e∫ P dx
= e– ∫ cosec x dx
= \(e^{-\log \left|\tan \frac{x}{2}\right|}\)
= cot \(\frac{x}{2}\)
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . cot \(\frac{x}{2}\) = ∫ tan \(\frac{x}{2}\) . cot \(\frac{x}{2}\) + C
⇒ y . cot \(\frac{x}{2}\) = x + C, which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 11.
(i) \(\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}\)
(ii) \(\frac{d y}{d x}\) + y cos x = esin x cos x
Solution:
(i) Given, \(\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}\)
⇒ \(\frac{d y}{d x}+\left(\frac{\cos x}{1+\sin x}\right) y=\frac{-x}{1+\sin x}\)
which is L.D.E. in y.
Here P = \(\frac{\cos x}{1+\sin x}\) ;
Q = \(\frac{-x}{1+\sin x}\)
∴ I.F. = e∫ P dx
= \(e^{\int \frac{\cos x d x}{1+\sin x}}\)
= elog (1 + sin x)
= 1 + sin x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y (1 + sin x) = ∫ \(\frac{-x}{1+\sin x}\) × (1 + sin x) dx + C
⇒ y (1 + sin x) = – \(\frac{x^2}{2}\) + C,
which is the required solution.

(ii) Given diff. eqn. be,
\(\frac{d y}{d x}\) + y cos x = esin x cos x

where P = cos x and Q = esin x cos x
Now I.F. = e∫ P dx
= e∫ cos x dx
= esin x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + c
⇒ y . esin x = esin x cos x . esin x dx + c
= ∫ e2 sin x cos x dx + c
put sin x = t
⇒ cos x dx = dt
y esin x = ∫ e2 t dt + c
⇒ y esin x = \(\frac{e^{2 t}}{2}\) + c
⇒ y esin x = \(\frac{1}{2}\) e2 sin x + c
⇒ y = \(\frac{1}{2}\) esin x + ce– sin x
which is the required solution curve.

Question 12.
(i) \(\frac{d y}{d x}\) – tan x . y = esin x, 0 < x < \(\frac{\pi}{2}\)
(ii) \(\frac{d y}{d x}\) + y = cos x – sin x
Solution:
(i) Given,
\(\frac{d y}{d x}\) – tan x . y = esin x ; 0 < x < \(\frac{\pi}{2}\)
which is linear diff. eqn. in y
Here P = – tan x and Q = esin x
∴ I.F. = e∫ P dx
= e∫ – tan x dx
= \(e^{\int \frac{-\sin x}{\cos x}} d x\)
= e∫ log cos x dx
= cos x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . cos x = ∫ esin x cos x dx + C
put sin x = t
⇒ cos x dx = dt
y cos x = ∫ et dt + C
⇒ y cos x = esin x + C
⇒ y = sec x (esin x + C).

(ii) Given diff. eqn. be,
\(\frac{d y}{d x}\) + y = cos x – sin x
which is L.D.E. in y of first order and on
comparing with \(\frac{d y}{d x}\) + Py = Q ; we have
P = 1 and Q = cos x – sin x
∴ I.F. = e∫ P dx
= e∫ 1 dx
= ex
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx + C
yex = ∫ ex (cos x – sin x) + C
= ∫ ex cos x dx – ∫ ex sin x dx + C
= cos x ex + ∫ sin x ex dx – ∫ ex sin x dx + C
⇒ yex = cos x ex + C
⇒ y = cos x + C e– x
which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 13.
(i) x \(\frac{d y}{d x}\) + y = x log x
(ii) x \(\frac{d y}{d x}\) + 2y = x2 log x. (NCERT)
Solution:
(i) Given diff. eqn. be,
x \(\frac{d y}{d x}\) + y = x log x
⇒ \(\frac{d y}{d x}+\frac{y}{x}\) = log x
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x}\)
and Q = log x
Now I.F. = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x = x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx + c
⇒ y.x = ∫ log x . x dx + c
⇒ xy = (log x) \(\frac{x^2}{2}\) – \(\int \frac{1}{x} \cdot \frac{x^2}{2} d x\) + c
⇒ xy = \(\frac{x^2}{2}\) log x – \(\frac{x^2}{4}\) + c
⇒ 4xy = 2x2 log x – x2 + A
which is the required solution.

(ii) Given diff. eqn. be,
x \(\frac{d y}{d x}\) + 2y = x2 log x
⇒ \(\frac{d y}{d x}+\left(\frac{2}{x}\right)\) y = x log x
which is L.D.E. and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = \(\frac{2}{x}\)
and Q = x log x
∴ I.F. = e∫ P dx
= \(e^{\int \frac{2}{x} d x}\)
= e2 log x
= elog x2
= x2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + c
⇒ y . x2 = ∫ x log x . x2 dx + c
⇒ x2y = log x . \(\frac{x^4}{4}-\int \frac{1}{x} \cdot \frac{x^4}{4}\) dx + c
⇒ x2y = \(\frac{x^4}{4} \log x-\frac{x^4}{16}\) + c
⇒ y = \(\frac{x^4}{16}\) [4 log |x| – 1] + \(\frac{c}{x^2}\)
which is the required solution.

Question 14.
(i) \(\frac{d y}{d x}\) + y cot x = 2 cos x
(ii) \(\frac{d y}{d x}\) – y tan x = 2 sin x
Solution:
(i) \(\frac{d y}{d x}\) + y cot x = 2 cos x ……………(1)
On comparing with \(\frac{d y}{d x}\) + Py = Q
where P = cot x ;
Q = 2 cos x ;
I.F. = e∫ cot x dx
= elog |sin x|
= sin x
Multiply eqn. (1) by sin x ; we get
sin x \(\frac{d y}{d x}\) + y cos x = 2 sin x cos x
⇒ \(\frac{d}{d x}\) (y sin x) = sin 2x
On integrating ; we have
y sin x = – \(\frac{\cos 2 x}{2}\) + C is the required solution.

(ii) Given, \(\frac{d y}{d x}\) – y tan x = 2 sin x
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q
where P = – tan x
and Q = 2 sin x
∴ I.F. = e∫ P dx
= ∫ Q . e∫ P dx + C
⇒ y . cos x = ∫ 2 sin x cos x dx + C
⇒ y cos x = – 2 ∫ cos (- sin x) dxx + C
⇒ y cos x = – 2 \(\frac{\cos ^2 x}{2}\) + C
⇒ y cos x = – cos2 x + C
⇒ y = – cos x + C sec x
which gives the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 15.
(i) (tan x) \(\frac{d y}{d x}\) + 2y = sec x
(ii) dy = x (x2 – 2y) dx
Solution:
(i) Given eqn. be,
tan x \(\frac{d y}{d x}\) + 2y = sec x
⇒ \(\frac{d y}{d x}\) + (2 cot x) y = \(\frac{\sec x}{\tan x}\) ……………….(1)
Comparing eqn. (1) with \(\frac{d y}{d x}\) + Py = Q
P = 2 cot x ;
Q = \(\frac{\sec x}{\tan x}\)
= sec x × tan x
= cosec x
∴ I.F. = e∫ P dx
= e∫ 2 cot x dx
= \(e^{\int \frac{2 \cos x d x}{\sin x}}\)
= e2 log sin x
= elog sin2 x
= sin2 x
Multiplying eqn. (1) by sin2 x ; we get
sin2 x \(\frac{d y}{d x}\) + 2 cot x sin2 x y = cosec x . sin2 x
∴ \(\frac{d}{d x}\) (y sin2 x) = sin x ;
On integrating ; we have
y sin2 x = – cos x + C is the required solution.

(ii) Given, dy = x (x2 – 2y) dx
⇒ \(\frac{d y}{d x}\) + 2xy = x3
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q
where P = 2x
and Q = x3
∴ I.F. = e∫ P dx
= e∫ 2x dx
= ex2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
∴ y . ex2 = ∫ x3 . ex2 dx + C
put x2 = t
⇒ 2x dx = dt
y ex2 = ∫ et . t \(\frac{d t}{2}\) + C
yex2 = \(\frac{1}{2}\) [t et – et] + C
yex2 = \(\frac{1}{2}\) (x2 – 1) ex2 + C
y = \(\frac{1}{2}\) (x2 – 1) + Cex2
which is the required solution.

Question 16.
(i) \(\frac{d y}{d x}\) – y = cot x
(ii) x log x \(\frac{d y}{d x}\) + y = 2 log x, x > 1
Solution:
(i) Given, \(\frac{d y}{d x}\) – y = cot x
which is linear in y and is of the form
\(\frac{d y}{d x}\) + Py = Q
where P = – 1 and Q = cos x
∴ I.F. = e∫ P dx
= e∫ – dx
= e– x
and solution is given by
⇒ y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ ye– x = 1 + C ……………….(1)
where I =∫ e– x cos x dx
= \(\cos x \frac{e^{-x}}{-1}-\int(-\sin x) \frac{e^{-x}}{-1}\) dx
= \(-\cos x \cdot e^{-x}-\left[\sin x \frac{e^{-x}}{-1}+\int \cos x e^{-x} d x\right]\)
2I = (sin x – cos x) e– x
∴ from (1) ; we have
y e– x = \(\frac{e^{-x}}{2}\) (sin x – cos x) + c
⇒ y = \(\frac{1}{2}\) (sin x – cos x) + C ex
which gives the required solution.

(ii) Given diff. eqn. be, x log x – \(\frac{d y}{d x}\) + y = 2 log x
⇒ \(\frac{d y}{d x}+\frac{1}{x \log x} y=\frac{2}{x}\)
which is linear differential eqn. and is of the form
\(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x \log x}\)
and Q = \(\frac{2}{x}\)
Now
I.F. = e∫ P dx
= \(e^{\int \frac{1 / x}{\log x} d x}\)
= elog (log x)
= log x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + c
⇒ y . log x = ∫ \(\frac{2}{x}\) log x dx + c
⇒ y log x = 2 \(\frac{(\log x)^2}{2}\) + c
[∵ ∫ [f(x)]n f'(x) dx = \(\frac{[f(x)]^{n+1}}{n+1}\) + c, n ≠ – 1]
⇒ y = log x + \(\frac{c}{llog x}\) be the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 17.
(i) y dx + (x – y2) dy = 0, y > 0 (NCERT)
(ii) (x + 3y2) dy = y dx (NCERT)
Solution:
(i) Given, y dx + (x – y2) dy = 0
⇒ \(\frac{d x}{d y}\) + \(\frac{x}{y}\) – y = 0
⇒ \(\frac{d x}{d y}+\frac{x}{y}\) = y
which is linear diff. eqn. in x and is of the form
\(\frac{d x}{d y}\) + Px = Q
where P = \(\frac{1}{y}\) and Q = y
∴ I.F. = e∫ P dy
= \(e^{\int \frac{1}{y} d y}\)
= elog y = y
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ xy = ∫ y . y dy + C
⇒ xy = \(\frac{y^3}{3}\) + C
which gives the required solution.

(ii) Given, (x + 3y2) dy = y dx
⇒ \(\frac{d x}{d y}=\frac{x}{y}\) + 3y
⇒ \(\frac{d x}{d y}-\frac{1}{y} x\) = 3y
which is linear diff. eqn. in x and is of the form
\(\frac{d x}{d y}\) + Px = Q
where P = – \(\frac{1}{y}\)
and Q = 3y
∴ I.F. = e∫ P dy
= \(e^{\int-\frac{1}{y} d y}\)
= e– log y
= elog y-1
= \(\frac{1}{y}\)
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ x . \(\frac{1}{y}\) = ∫ 3y × \(\frac{1}{y}\) dy + C
⇒ \(\frac{x}{y}\) = 3y + C
⇒ x = 3y2 + Cy, which gives the required solution.

Question 18.
(i) dx + x dy = e– y log y dy, y > 0
(ii) (x + 2y3) dy = y dx, y > 0 (NCERT Exemplar)
Solution:
(i) Given, dx + x dy = e– y log y dy
⇒ dx = (e– y log y – x) dy
⇒ \(\frac{d x}{d y}\) + x = e– y log y
which is L.D.E. in x and is of the form
\(\frac{d x}{d y}\) + Px = Q
where P = 1 ; Q = e– y log y
∴ I.F. = e∫ P dy
= e∫ dy
= ey
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ xey = ∫ e– y log y . ey dy + C
⇒ xey = ∫ log y . 1 dy + C
⇒ xey = y log y – y + C
⇒ xey = y (log y – 1) + C
which gives the required solution.

(ii) Given, (x + 2y3) dy = y dx
⇒ \(\frac{d x}{d y}=\frac{x+2 y^3}{y}\)
⇒ \(\frac{d x}{d y}-\frac{x}{y}\) = 2y2
which is linear diff. eqn. in x and is of the form
\(\frac{d x}{d y}\) + Px = Q ;
where P = – \(\frac{1}{y}\)
and Q = 2y2
∴ I.F. = e∫ P dy
= \(e^{\int-\frac{1}{y} d y}\)
= e– log y
= elog y-1
= \(\frac{1}{y}\)
and solution is given by
x . e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ \(\frac{x}{y}\) = ∫ 2y2 . \(\frac{1}{y}\) dy + C
⇒ \(\frac{x}{y}\) = y2 + C
⇒ x = y2 + Cy
which gives the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 19.
(tan-1 y – x) dy = (1 + y2) dx
Solution:
Given diff. eqn. be
(1 + y2) dx = (tan-1 y – x) dy

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7 5

x etan-1 y = ∫ et . t dt + C
= (t – 1) et + C
⇒ x etan-1 y = (tan-1 y – 1) etan-1 y + C
⇒ x = tan-1 y – 1 + C e– tan-1 y
which is the required solution.

Question 20.
Solve the differential equation (1 + x2) \(\frac{d y}{d x}\) + 2xy – 4x2 = 0 subject to the initial condition y(0) = 0.
Solution:
Given eqn. is \(\frac{d y}{d x}\) + 2Y = 6ex …………….(1)
Now eqn. (1) is LD.E of 1st order in y.
On comparing with \(\frac{d y}{d x}\) + Py = Q;
we have
P = 2 and Q = 6ex
∴ I.F = e∫ P dx
= e∫ 2 dx
= e2x
Multiply eqn. (1) by e2x; we get
e2x \(\frac{d y}{d x}\) + 2 e2x y = 6 e3x
⇒ \(\frac{d}{d x}\) (y e2x) = 6 e3x ;
On integrating we have
y e2x = ∫ 6 e3x dx + C
⇒ y e2x = \(\frac{6 e^{3 x}}{3}\) + C
⇒ y = 2 ex + C e-2x is the required solution.

Question 21.
Solve the differential equation \(\frac{d y}{d x}\) + y cot x = 2x + x2 cot x, given that y = 0 when x = \(\frac{\pi}{2}\).
Solution:
Given, \(\frac{d y}{d x}\) + y cot x = 2x + x2 cot x ………………….(1)
On comparing with \(\frac{d y}{d x}\) + Py = Q ;
we have
P = cot x ; Q = 2x + x2 cot x
∴ I.F. = e∫ P dx
= \(e^{\int \frac{\cos x}{\sin x} d x}\)
Multiply eqn. (1) by sin x; we get
sin x \(\frac{d y}{d x}\) + y cos x = [2x sin x + x2 cos x]
⇒ \(\frac{d}{d x}\) (y sin x) = 2x sin x + x2 cos x;
on integrating ; we have
y sin x = ∫ 2x sin x dx + ∫ x2 cos x dx + C
⇒ y sin x = ∫ 2x sin x dx + [x2 sin x – ∫ 2x sin x dx] + C
⇒ y sin x = x2 sin x + C ……………..(2)
given y = 0 when x = \(\frac{\pi}{2}\)
∴ from (2) ;
0 = (\(\frac{\pi}{2}\))2 + C
⇒ C = – \(\frac{\pi^2}{4}\)
Thus eqn. (2) givcs;
y sin x = x2 sin x – \(\frac{\pi^2}{4}\)
⇒ y = x2 – \(\frac{\pi}{4}\) cosec x.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 22.
If \(\frac{d y}{d x}\) + 2xy = x, then prove taht 2y = 1 + e– x2, given that y = 1 when x = 0.
Solution:
Given, \(\frac{d y}{d x}\) + 2xy = x,
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q
∴ I.F. = e∫ P dx
= e∫ 2x dx
= ex2
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . ex2 = ∫ x . ex2 dx + C
put x2 = t
⇒ 2x dx = dt
y . ex2 = \(\frac{1}{2}\) ∫ et dt
⇒ y . ex2 = \(\frac{1}{2}\) ex2 + C
⇒ y = \(\frac{1}{2}\) + Ce-x2 ………………(1)
Given y = 1, when x = 0
∴ from (1) ;
1 = \(\frac{1}{2}\) + Ce0
⇒ C = \(\frac{1}{2}\)
∴ from (1) ; we have
2y = 1 + e-x2 be the required solution.

Question 23.
Solve (x + 2y2) \(\frac{d y}{d x}\) = y, given that x = 2 when y = 1.
Solution:
Given diff. eqn. be,
(x + 2y2) \(\frac{d y}{d x}\) = y
⇒ \(\frac{d x}{d y}=\frac{x+2 y^2}{y}=\frac{x}{y}\) + 2y
⇒ \(\frac{d x}{d y}-\frac{x}{y}\) = 2y
which is linear differential equation of the form \(\frac{d x}{d y}\) + Px = Q
where P = – \(\frac{1}{y}\)
and Q = 2y
Now I.F. = e∫ P dy
= \(e^{\int-\frac{1}{y} d y}\)
= e– log |y|
= \(\frac{1}{y}\)
x.e∫ P dy = ∫ Q . e∫ P dy dy + C
⇒ \(\frac{x}{y}\) = ∫ 2y . \(\frac{1}{y}\) dy + c
⇒ \(\frac{x}{y}\) = 2y + c
⇒ x = 2y2 + cy ……………..(1)
Given where x = 2, y = 1
∴ From (1) ;
2 = 2 + c
⇒ c = 0
∴ From eqn. (1) ; we have
x = 2y2 be the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

Question 24.
Solve the differential equation :
\(\frac{d y}{d x}\) + y sec2 x = tan x sec2 x, y(0) = 1.
Solution:
Given, \(\frac{d y}{d x}\) + y sec2 x = tan x sec2 x
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = sec2 x ;
Q = tan x sec2 x
∴ I.F. = e∫ P dx
= e∫ sec2 x dx
= etan x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . etan x = ∫ tan x . sec2 x . etan x dx + C
put tan x = t
⇒ sec2 x dx = dt
y etan x = ∫ t et dt + C
⇒ y etan x = [t et – et] + C
⇒ y . etan x = (tan x – 1) etan x + C
⇒ y = (tan x – 1) + C e– tan x ……………….(1)
which gives the required general solution.
Given y(0) = 1 i.e. when x = 0 ; y = 1
∴ from (1) ;
1 = – 1 + C
⇒ C = 2
Thus eqn. (1) gives ;
y = (tan x – 1) + 2e– tan x
which gives the required solution..

Question 25.
Find the particular solutions of the following differential equations:
(i) y’ – y = ex, given that y = 1 when x = 0
(ii) y’ + y = ex, given that y = \(\frac{1}{2}\) when x = 0
(iii) xy’ + y = x log x, given that y = \(\frac{1}{4}\) when x = 1
(iv) xy’ – y = log x, given that y = 0 when x = 1.
(v) (1 + x2) \(\frac{d y}{d x}\) + 2xy = \(\frac{1}{1+x^2}\), given that y = 0 when x = 1.
(vi) \(\frac{d y}{d x}\) + 2y tan x = sin x, given that y = 0 when x = \(\frac{\pi}{3}\).
(vii) y’ + 2y = e-2x sin x, given that y = 0 when x = 0.
(viii) xy’ + y = x cos x + sin x, given that y = 1 when x = \(\frac{\pi}{2}\).
Solution:
(i) Given y’ – y = ex,
which is L.D.E. in y and is of the form
\(\frac{d y}{d x}\) + Py = Q ;
where P = – 1 and Q = ex
∴ I.F. = e∫ P dx
= e∫ – dx
= e– x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ ye– x = ∫ ex . e– x dx + C
⇒ ye– x = x + C ………………(1)
Given that y = 1 when x = 0
∴ from (1) ;
1 . e-0 = 0 + C
⇒ C = 1
Thus eqn. (1) gives ;
y e– x = x + 1
⇒ y = (x + 1) ex
which gives the required solution.

(ii) Given diff. eqn. be,
y’ + y = ex
which is L.D.E. and of the form
\(\frac{d y}{d x}\) + Py = Q
where p = 1 and Q = ex
∴ I.F. = e∫ P dx
= e∫ dx dx
= ex
and its solution is given by
y . e∫ P dx =∫ Q . e∫ P dx dx + c
⇒ y . ex = ∫ ex . ex dx + c
= ∫ e2x dx + c
⇒ yex = \(\frac{e^{2 x}}{2}\) + c
y = \(\frac{e^x}{2}\) + ce-x ………………(1)
Given y (0) = \(\frac{1}{2}\)
i.e. when x = 0 ; y = \(\frac{1}{2}\)
∴ From eqn. (1) ;
we have \(\frac{1}{2}\) = \(\frac{1}{2}\) + c
⇒ c = 0
∴ From eqn. (1) ;
y = \(\frac{e^x}{2}\),
be the required solution of initial value problem.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

(iii) Given, xy’ + y = x log x
⇒ \(\frac{d y}{d x}\) + \(\frac{1}{x}\) y = log x
which is L.D.E. in y of first order
and is of the form,
\(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x}\) and Q = log x
∴ I.F. = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x = x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ y . x = ∫ log x . x dx + C
⇒ xy = log x . \(\frac{x^2}{2}\) – \(\int \frac{1}{x} \cdot \frac{x^2}{2}\) dx + C
⇒ xy = \(\frac{x^2}{2}\) log x – \(\frac{x^2}{4}\) + C
⇒ y = \(\frac{x}{2}\) log x – \(\frac{x}{4}\) + \(\frac{C}{x}\) …………..(1)
Given that y = \(\frac{1}{4}\) when x = 1
∴ from (1) ;
\(\frac{1}{4}\) = \(\frac{1}{2}\) log 1 – \(\frac{1}{4}\) + C
⇒ C = \(\frac{1}{2}\)
∴ from (1) ; we have
y = \(\frac{x}{2}\) log x – \(\frac{x}{4}\) + \(\frac{1}{2 x}\),
which gives the required solution.

(iv) Given diff. eqn. be,
x \(\frac{d y}{d x}\) – y = log x
⇒ \(\frac{d y}{d x}-\frac{y}{x}=\frac{\log x}{x}\)
which is L.D.E. of the form
\(\frac{d y}{d x}\) + Py = Q
where P = – \(\frac{1}{x}\)
and Q = \(\frac{log x}{x}\)
I.F. = e∫ P dx
= \(e^{\int-\frac{1}{x} d x}\)
= e– log x
= elog x-1
= \(\frac{1}{x}\)
and solution is given by
ye∫ P dx = ∫ Q . e∫ P dx + c
⇒ y . \(\frac{1}{x}\) = \(\int \frac{\log x}{x} \cdot \frac{1}{x} d x\) + c
put log x = t
⇒ x = et
⇒ dx = et dt
= \(\int \frac{t}{e^{2 t}}\) et dt + c
= ∫ t . e-t dt + c
⇒ \(\frac{y}{x}\) = [- t e-t – e-t] + c
⇒ y = – x (log x + 1) + cx ………………..(1)
Given y(1) = 0 i.e. when x = 1 ; y = 0
∴ from (1) ; we have
0 = – (0 + 1) + c
c = 1
∴ From eqn. (2) ; we have
y = – (log x + 1) + x be the reqd. solution.

(v) Given diff. eqn. can be written as
\(\frac{d y}{d x}+\frac{2 x}{1+x^2} y=\frac{1}{\left(1+x^2\right)^2}\)
which is L.D.E. in y of first order and comparing with
\(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{2 x}{1+x^2}\) ;
Q = \(\frac{1}{\left(1+x^2\right)^2}\)
∴ I. F. = e∫ P dx
= \(e^{\int \frac{2 x}{1+x^2} d x}\)
= elog (1 + x2)
= (1 + x2)
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx + C
y (1 + x2) = tan-1 x + C …………………(1)
Given y (0) = 0 i.e. when x = O, y = O
∴ from (2) ;
0 = 0 + C
⇒ C = 0
∴ eqn. (2) becomes ;
y(1 + x2) = tan-1 x is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.7

(vi) Given \(\frac{d y}{d x}\) + 2y tan x = sin x
which is linear diff. eqn of the form
\(\frac{d y}{d x}\) + Py = Q;
where P = 2 tan x and Q = sin x
∴ I.F. = e∫ P dx
= e∫ tan x dx
= e– 2 log |cos x|
and solution is given by
ye∫ P dx = ∫ Q . e∫ P dx dx +c
⇒ y . sec2 x = ∫ sin x . sec2 x dx + c
⇒ y sec2 x = ∫ tan x sec x dx + c
⇒ y sec2 x = sec x + c ……………………..(1)
Given y = 0 when x = \(\frac{\pi}{3}\)
∴ eqn (1) gives;
0 = 2 + c
⇒ c = -2
From eqn (1); we have
y sec2 x = sec x – 2
⇒ y = \(\frac{1}{\sec x}-\frac{2}{\sec ^2 x}\)
y = cos x – 2cos2 x
which is the requried solution.

(vii) Given diff. eqn be,
\(\frac{d y}{d x}\) + 2y = e– 2x sin x
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q
where P = 2
and Q = e– 2x sin x
Now. I.F. = e∫ P dx
= e∫ 2 dx
= e2x
and solution is given by
y . e∫ P dx = ∫ Q . e∫ P dx dx + c
⇒ y . e2x = ∫ e-2x sin x . e2x dx + c
⇒ ye2x = – cos x + c ……………..(1)
Given y(0) = 0 i.e. when x = 0 ; y = 0
∴ From (1);
0 = – 1 + c
⇒ c = 1
∴ From eqn (1) ; we have
ye2x = 1 – cos x, which is the required solution of given initial value problem.

(viii) Given x \(\frac{d y}{d x}\) + y = x cos x + sin x
⇒ \(\frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}\)
which is L.D.E. of the form \(\frac{d y}{d x}\) + Py = Q
where P = \(\frac{1}{x}\)
and Q = cos x + \(\frac{sin x}{x}\)
∴ I.F. = e∫ P dx
= \(e^{\int \frac{1}{x} d x}\)
= elog x
= x
and solution is given by
ye∫ P dx = ∫ Q . e∫ P dx dx + C
⇒ yx = ∫ [cos x + \(\frac{sin x}{x}\)] x dx + c
⇒ xy = ∫ x cos x dx + ∫ sin x dx + c
= x sin x – ∫ sin x dx – cos x + c
= x sin x + cos x – cos x + c
⇒ xy = x sin x + c ……………..(1)
Given y(\(\frac{\pi}{2}\)) = 1
i.e. when x = \(\frac{\pi}{2}\) ; y = 1
∴ From eqn (1) ;
\(\frac{\pi}{2}\) × 1 = \(\frac{\pi}{2}\) × 1 + c
⇒ c = 0
∴ From eqn (1) ; we have
xy = x sin x
⇒ y = sin x be the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Accessing Class 12 ISC Maths Solutions can be a valuable tool for students seeking extra practice.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Very Short answer type questions (1 to 2) :

Question 1.
Which of the following differential equations are homogeneous ?
(i) (x – y) \(\frac{d y}{d x}\) = x + 2y
(ii) y – x \(\frac{d y}{d x}\) = x + y \(\frac{d y}{d x}\)
Solution:
(i) Given (x – y) \(\frac{d y}{d x}\) = x + 2y
⇒ \(\frac{d y}{d x}=\frac{x+2 y}{x-y}\),
which is homogenenous diff. eqn.
Since \(\frac{d y}{d x}=\frac{x\left(1+\frac{2 y}{x}\right)}{x\left(1-\frac{y}{x}\right)}=\phi\left(\frac{y}{x}\right)\)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Thus from given eqn ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 1

(ii) Given differential eqn. be \(\frac{d y}{d x}=\frac{y-x}{y+x}\)
which is homogenenous diff. equation.
Since \(\frac{d y}{d x}=\frac{x\left(\frac{y}{x}-1\right)}{x\left(\frac{y}{x}-1\right)}=\phi\left(\frac{y}{x}\right)\)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 2

⇒ \(\frac{1}{2}\) log (v2 + 1) + tan-1 v + log x = \(\frac{1}{2}\) log c
⇒ log (v2 + 1) + tan-1 v + log x = \(\frac{1}{2}\) log c
⇒ log (\(\frac{y^2}{x^2}\) + 1) x2 + 2 tan-1 (\(\frac{y}{x}\)) = A
⇒ log (x2 + y2) + 2 tan-1 (\(\frac{y}{x}\)) = A
which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 1 (old).
When a differential equation is called homogeneous ?
Solution:
A differential eqn. \(\frac{d y}{d x}\) = f(x, y) is said to be homogeneous diff. eqn. iff(x, y) be a homogenenous function of degree 0.
i.e. a homogenenous diff. eqn. is of the form,
\(\frac{d y}{d x}\) = f (\(\frac{y}{x}\))
or \(\frac{d x}{d y}\) = g (\(\frac{x}{y}\))

Question 2.
(x2 + 3xy – 4y2) dx – x (x2 + 2y) dy = 0
Solution:
Given diff. eqn. can be written as,
\(\frac{d y}{d x}=\frac{x^2+3 x y-4 y^2}{x\left(x^2+2 y\right)}\)
= \(\frac{x^2\left[1+\frac{3 y}{x}-4\left(\frac{y}{x}\right)^2\right]}{x^2\left(x+\frac{2 y}{x}\right)}\)
i.e. \(\frac{d y}{d x}\) is not a function of \(\frac{y}{x}\).
Thus given diff. eeqn. is not homogenenous.

Question 3.
(i) x \(\frac{d y}{d x}\) + y = x tan-1 \(\frac{y}{x}\)
(ii) x cos (\(\frac{y}{x}\)) \(\frac{d y}{d x}\) = y cos (\(\frac{y}{x}\)) – 3x2
Solution:
(i) Given diff. eqn. be,
x \(\frac{d y}{d x}\) + y = x tan-1 \(\frac{y}{x}\)
⇒ \(\frac{d y}{d x}\) = – \(\frac{y}{x}\) + tan-1 \(\frac{y}{x}\)
Thus \(\frac{d y}{d x}\) = f(\(\frac{y}{x}\))
∴ given diff. eqn. be homogenenous diff. eqn.

(ii) Given diff. eqn. be,
x cos (\(\frac{y}{x}\)) \(\frac{d y}{d x}\) = y cos (\(\frac{y}{x}\)) – 3x2
∴ \(\frac{d y}{d x}=\frac{y \cos \left(\frac{y}{x}\right)-3 x^2}{x \cos \left(\frac{y}{x}\right)}\)
= \(\frac{\frac{y}{x} \cos \left(\frac{y}{x}\right)-3 x}{\cos \left(\frac{y}{x}\right)}\)
which is not of the form, \(\frac{d y}{d x}\) = f(\(\frac{y}{x}\))
Hence given diff. eqn. is not homogenenous.

Question 3 (old).
(ii) (x – y) dy – (x + y) dx = 0 (NCERT)
Solution:
Given \(\frac{d y}{d x}=\frac{x+y}{x-y}\),
which is homogeneous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Thus given eqn. becomes

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 4.
(i) x \(\frac{d y}{d x}\) – y = \(\sqrt{x^2+y^2}\)
(ii) (x2 + y2 sin \(\frac{x}{y}\)) \(\frac{d y}{d x}\) = 2xy ex/y
Solution:
(i) Given, diff. eqn. be
x \(\frac{d y}{d x}\) – y = \(\sqrt{x^2+y^2}\)
⇒ \(\frac{d y}{d x}=\frac{y}{x}+\sqrt{1+\left(\frac{y}{x}\right)^2}\)
= f (\(\frac{y}{x}\))
Hence given diff. eqn. is homogeneous diff. eqn.

(ii) Given diff. eqn. be

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 3

Question 5.
(i) 2y e\(\frac{x}{y}\) dx + (y – 2xe\(\frac{x}{y}\)) dy = 0
(ii) y dx + x log (\(\frac{y}{x}\)) dy – 2x dy = 0
Solution:
(i) Given, diff. eqn. be
2y e\(\frac{x}{y}\) dx + (y – 2xe\(\frac{x}{y}\)) dy = 0
⇒ \(\frac{d x}{d y}=-\frac{\left(y-2 x e^{x / y}\right)}{2 y e^{x / y}}\)
= \(\frac{\frac{2 x}{y} e^{x / y}-1}{2 e^{x / y}}\)
which is of the form \(\frac{d x}{d y}\) = f (\(\frac{x}{y}\))
Hence given diff. eqn. be homogenenous.

(ii) Given differential eqn. can be written as
y dx = [2x – x log (\(\frac{y}{x}\))] dy
\(\frac{d x}{d y}=\frac{2 x}{y}+\frac{x}{y} \log \frac{x}{y}\)
= f (\(\frac{x}{y}\))
Thus, given differential eqn. be homogenenous.

Question 6.
(i) \(\frac{d y}{d x}=\frac{x+y}{x}\) (NCERT)
(ii) (x – y) dy = (x + y) dx
Solution:
(i) Given diff. eqn. be,
\(\frac{d y}{d x}=\frac{x+y}{x}\)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ v + x \(\frac{d v}{d x}\) = \(\frac{x+v x}{x}\) = 1 + v
x \(\frac{d v}{d x}\) = 1
⇒ dv = \(\frac{d x}{x}\)
On integrating ; we have
v = log x + C
y = x log |x| + Cx
which is the required solution.

(ii) Given \(\frac{d y}{d x}=\frac{x+y}{x-y}\),
which is homogenenous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Thus, given eqn becomes ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 7.
(i) (x – y) y’ = x + 3y
(ii) (x + 2y) dx – (2x – y) dy = 0
Solution:
(i) Given, (x – y) y’ = x + 3y
⇒ y’ = \(\frac{x+3 y}{x-y}\) …………….(1)
Also, y’ = \(\frac{d y}{d x}\)
= \(\frac{1+3 \frac{y}{x}}{1-\frac{y}{x}}\)
= f(\(\frac{y}{x}\) )
Thus eqn. (1) be homogenenous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 5

(ii) Given (x + 2y) dx – (2x – y) dy = 0
⇒ \(\frac{d y}{d x}=\frac{x+2 y}{2 x-y}\),
which is homogenenous differential equation.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 6

Question 7 (old).
Prove that x2 – y2 = c (x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2) dx = (y3 – 3x2y) dy where c is a parameter.
Solution:
Given differential eqn. can be written as
\(\frac{d y}{d x}=\frac{x^3-3 x y^2}{y^3-3 x^2 y}\) ………………….(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 10

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 11

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 8.
(i) (y2 – 2xy) dx = (x2 – 2xy) dy
(ii) 2xy dx + (x2 + 2y2) dy = 0
Solution:
(i) Given, (y2 – 2xy) dx = (x2 – 2xy) dy
⇒ \(\frac{d y}{d x}=\frac{y^2-2 x y}{x^2-2 x y}\) ……………..(1)
which is homogenenous differential equation
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 7

⇒ – log |v| – log |v – 1| = 3 log |x| + log c
log [v (v – 1) x3] = – log c
= log \(\frac{1}{c}\)
= log A
⇒ \(\frac{y}{x}\left(\frac{y}{x}-1\right)\) x3 = A
⇒ \(\frac{y(y-x)}{x^2}\) × x3 = A
⇒ xy2 – x2y = A be the required solution.

(ii) Given 2xy dx + (x2 + 2y2) dy = 0
⇒ \(\frac{d y}{d x}=-\frac{2 x y}{x^2+2 y^2}\) ……………….(1)
which is homogenenous differential equation
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 8

Question 8 (old).
(ii) x \(\frac{d y}{d x}\) = y (log y – log x + 1)
Solution:
Given \(\frac{d y}{d x}\) = \(\frac{y}{x}\) (log y – log x + 1)
⇒ \(\frac{d y}{d x}=\frac{y}{x}\left\{\log \frac{y}{x}+1\right\}\) …………………….(1)
[∵ log a – log b = log \(\frac{a}{b}\)]
putting y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Thus from eqn. (1) ; we have
v + x \(\frac{d v}{d x}\) = v {log v + 1}
⇒ x \(\frac{d v}{d x}\) = v log v
\(\frac{d v}{v \log v}=\frac{d x}{x}\)
integrating both sides, we have
\(\int \frac{d v}{v \log v}=\int \frac{d x}{x}\)
⇒ \(\int \frac{\frac{1}{v} d v}{\log v}=\int \frac{d v}{x}\)
⇒ log (log v) – log x = log c
⇒ log [log v] = log cx
⇒ log v = cx
⇒ log (y/x) = cx be the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 9.
(i) (x2 y2) dx + 2xy dy = 0 (NCERT)
(ii) x2 \(\frac{d y}{d x}\) = x2 + xy + y2 (NCERT Exemplar)
Solution:
(i) Given, \(\frac{d y}{d x}=\frac{y^2-x^2}{2 x y}\) ………….(1)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 9

(ii) Given x2 \(\frac{d y}{d x}\) = x2 + xy + y2
⇒ \(\frac{d y}{d x}=\frac{x^2+x y+y^2}{x^2}\) ………………..(1)
which is homogenenous differential equation
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From eqn. (1) ; we have
v + x \(\frac{d v}{d x}\) = \(\frac{x^2+v x^2+v^2 x^2}{x^2}\)
⇒ x \(\frac{d v}{d x}\) = 1 + v + v2 – v
= 1 + v2
⇒ \(\frac{d v}{1+v^2}=\frac{d x}{x}\) ;
on integrating
⇒ \(\int \frac{d v}{1+v^2}=\int \frac{d x}{x}\)
⇒ tan-1 v = log |x| + c
⇒ tan-1 \(\frac{y}{x}\) = log |x| + c be the required solution.

Question 10.
(i) x \(\frac{d y}{d x}\) + \(\frac{y^2}{x}\) = y
(ii) 3x2 \(\frac{d y}{d x}\) – 3xy = y2
Solution:
(i) Given, x \(\frac{d y}{d x}\) + \(\frac{y^2}{x}\) = y
⇒ x \(\frac{d y}{d x}\) = y – \(\frac{y^2}{x}\)
= \(\frac{x y-y^2}{x}\)
⇒ \(\frac{d y}{d x}=\frac{x y-y^2}{x}\) ………………(1)
Clearly \(\frac{d y}{d x}=\frac{y}{x}-\left(\frac{y}{x}\right)^2=f\left(\frac{y}{x}\right)\)
Thus, eqn. (1) be homogenenous differential equation.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ;
v + x \(\frac{d v}{d x}\) = \(\frac{v x^2-v^2 x^2}{x^2}\)
⇒ x \(\frac{d v}{d x}\) = v – v2 – v = – v2
⇒ \(\frac{d v}{v^2}=-\frac{d x}{x}\)
on integrating ; we have
⇒ \(\int \frac{d v}{v^2}=-\int \frac{d x}{x}+\mathrm{C}\)
⇒ – \(\frac{1}{v}\) = – log |x| + C
⇒ – \(\frac{x}{y}\) = – log |x| + C
⇒ log |x| = C + \(\frac{x}{y}\)
⇒ |x| = ex/y ec
⇒ x = ± ec ex/y
= A ex/y which is the required solution.

(ii) Given diff. eqn. be written as ;
\(\frac{d y}{d x}=\frac{3 x y+y^2}{3 x^2}\) …………..(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 12

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 11.
(i) \(\frac{d y}{d x}=\frac{y}{x}+\frac{\sqrt{x^2-y^2}}{x}\), x > 0
(ii) \(x \frac{d y}{d x}-y=2 \sqrt{y^2-x^2}\), x > 0
Solution:
(i) Given,
\(\frac{d y}{d x}=\frac{y}{x}+\frac{\sqrt{x^2-y^2}}{x}\), x > 0 ……………….(1)
Also, \(\frac{d y}{d x}=\frac{y}{x}+\sqrt{1-\left(\frac{y}{x}\right)^2}=\phi\left(\frac{y}{x}\right)\)
Thus eqn. (1) be homogenenous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ;
v + x \(\frac{d v}{d x}\) = v + \(\sqrt{1-v^2}\)
⇒ \(x \frac{d v}{d x}=\sqrt{1-v^2}\)
⇒ \(\frac{d v}{\sqrt{1-v^2}}=\frac{d x}{x}\)
On integrating ; we have
\(\int \frac{d v}{\sqrt{1-v^2}}=\int \frac{d x}{x}+\mathrm{A}\)
⇒ sin-1 v = log |x| + A
⇒ sin-1 (\(\frac{y}{x}\)) = log |x| + A
which is the required solution.

(ii) Given,
\(x \frac{d y}{d x}-y=2 \sqrt{y^2-x^2}\), x > 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 13

Question 12.
\(\left(\frac{y}{x} \cos \frac{y}{x}\right)\)dx – \(\left(\frac{x}{y} \sin \frac{y}{x}+\cos \frac{y}{x}\right)\) dy = 0
Solution:
Given,
\(\left(\frac{y}{x} \cos \frac{y}{x}\right)\)dx – \(\left(\frac{x}{y} \sin \frac{y}{x}+\cos \frac{y}{x}\right)\) dy = 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 14

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 13.
(i) (1 + ey/x) dy + ey/x (1 – \(\frac{y}{x}\)) dx = 0
(ii) 2yex/y dx – (y – 2xex/y) dy = 0
Solution:
(i) Given diff. eqn. can be written as ;
\(\frac{d y}{d x}=\frac{-e^{y / x}\left(1-\frac{y}{x}\right)}{1+e^{y / x}}\) ………………(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ; we have
v + x \(\frac{d v}{d x}\) = \(\frac{-e^v(1-v)}{1+e^v}\)
⇒ x \(\frac{d v}{d x}\) = \(\frac{-e^v(1-v)}{1+e^v}\) – v
= \(\frac{-e^v+v e^v-v-v e^v}{1+e^v}\)
⇒ \(\frac{\left(1+e^v\right) d v}{v+e^v}=-\frac{d x}{x}\)
On integrating both sides ; we have
\(\int \frac{\left(1+e^v\right) d v}{v+e^v}=-\int \frac{d x}{x}\) + log C
⇒ log |v + ev| = – log |x| + log C
[∵ ∫ \(\frac{f^{\prime}(x) d x}{f(d)}\) = log |f(x)| + C]
⇒ log |(v + ev)x| = log C
⇒ log |y + x ey/x| = log C
⇒ y + x ey/x = A [∵ ± C = A]
which is the required solution.

(ii) Given diff. eqn. can be written as
\(\frac{d x}{d y}=\frac{\left(2 x e^{x / y}-y\right)}{2 y e^{x / y}}\) …………….(1)
Here f (x, y) = \(\frac{2 x e^{x / y}-y}{2 y e^{x / y}}\)
∴ f (kx, ky) = \(\frac{2 k x e^{k x / k y}-k y}{2 k y e^{k x / k y}}\) = k0 f (x, y)
∴ f (x, y) is a homogenenous function of degree 0.
put \(\frac{x}{y}\) = v
⇒ x = yv
Diff. both sides w.r.t. y, we have
⇒ \(\frac{d x}{d y}=v+y \frac{d v}{d y}\) ……………….(2)
Putting eqn. (2) in eqn. (1) ; we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 15

Question 14.
Solve the differential equation (x + y) dy + (x – y) dx = 0, given that y = 1 when x = 1. (NCERT)
Solution:
Given \(\frac{d y}{d x}=\frac{y-x}{x+y}\) ……………..(1)
Here f (x, y) = \(\frac{y-x}{x+y}\)
∴ f(kx, ky) = \(\frac{k y-k x}{k x+k y}\)
= \(\frac{k(y-x)}{k(x+y)}\)
= k0 f (x, y)
Thus f (x, y) is homogenenous function of degree 0.
putting y = vx so that
\(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\) ……………..(2)
using eqn. (2) in eqn. (1) ; we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 16

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 14 (old).
Find particular solutions of the following differential equations :
(i) 2xy + y2 – 2x2 = 0, given that y(1) = 2.
(ii) \(\frac{d y}{d x}-\frac{y}{x}\) + cosec \(\left(\frac{y}{x}\right)\) = 0 given that y = 0 when x = 1.
(iii) xey/x – y + x \(\frac{d y}{d x}\) = 0, given that y(e) = 0.
Solution:
(i) Given 2xy + y2 – 2x2 = 0
⇒ \(\frac{d y}{d x}=\frac{2 x y+y^2}{2 x^2}\) ……………(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\) ……………(2)
Using eqn. (2) in eqn. (1) ; we have
v + x \(\frac{d v}{d x}\) = \(\frac{2 v x^2+v^2 x^2}{2 x^2}\)
⇒ \(\frac{x d v}{d x}=\frac{2 v+v^2}{2}-v=\frac{v^2}{2}\)
On variable separation, we have
\(\frac{2}{v^2} d v=\frac{d x}{x}\) ;
On integrating
– \(\frac{2}{v}\) = log |x| + C
⇒ – \(\frac{2x}{y}\) = log |x| + C …………….(1)
given y(1) = 2 i.e. when x = 1, y = 2
∴ from (1) ;
– 1 = C
∴ eqn. (1) becomes
– \(\frac{2x}{y}\) = log |x| – 1
⇒ \(\frac{2x}{y}\) = 1 – log |x|
⇒ y = \(\frac{2 x}{1-\log |x|}\) ; x ≠ 0, 1
which is the required solution.

(ii) Given \(\frac{d y}{d x}-\frac{y}{x}\) + cosec \(\left(\frac{y}{x}\right)\) = 0
⇒ \(\frac{d y}{d x}\) = \(\frac{y}{x}\) – cosec \(\frac{y}{x}\) ……………(1)
which is homogenenous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ; we have
v + x \(\frac{d v}{d x}\) = v – cosec v
⇒ x \(\frac{d v}{d x}\) = – cosec v
⇒ \(\frac{d v}{\ {cosec} v}=-\frac{d x}{x}\) ;
on integrating ; we have
⇒ ∫ sin v dv = – ∫ \(\frac{d v}{x}\)
⇒ – cos v = – log |x| + c
⇒ – cos \(\frac{y}{x}\) = – log |x| + c
Since y (1) = 0
i.e. when x = 1 ; y = 0
∴ from (2) ; we have
– 1 = 0 + c
⇒ c = – 1
∴ From (2) ; we have
1 – cos \(\frac{y}{x}\) = – log |x|
⇒ cos (\(\frac{y}{x}\)) – 1 = log |x| which is the required solution.

(iii) Given xey/x – y + x \(\frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=\frac{y-x e^{y / x}}{x}\)
= \(\frac{y}{x}\) – e\(\frac{y}{x}\) ………………(1)
which is homogeneous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From (2) ;
– 1 + log |e| = c
from (1) ; we have
v + x \(\frac{d v}{d x}\) = v – ev
⇒ x \(\frac{d v}{d x}\) = – ev
⇒ e– v dv = – \(\frac{d x}{x}\) ;
On integrating ; we have
∫ e– v dv = – ∫\(\frac{d x}{x}\)
⇒ – e– v + log |x| = c
⇒ – e– y/x + log |x| = c ……………..(2)
Since y (e) = 0
i.e. When x = e ; y = 0
∴ From (2) ;
– 1 + log |e| = c
⇒ c = 0
∴ From (2) ;
e– y/x = log |x|
⇒ – \(\frac{y}{x}\) = log (log |x|)
⇒ y = -x log (log |x|)
which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 15.
Solve the differential equation (x2 – y2) dx + 2xy dy = 0, given that y = 1 when x = 1.
Solution:
Given diff. eqn. can be written as

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 17

⇒ log (1 + y2) + log x = log C
⇒ log x (1 + y2) = log C
⇒ x \(\left(1+\frac{y^2}{x^2}\right)\) = C
which is the required general solution.
Given y = 1 when x = 1
∴ from (2) ;
1 + 1 = C
⇒ C = 2
Thus eqn. (2) becomes ;
x2 + y2 = 2x, which is the required solution.

Question 16.
Find particular solutions of the following differential equations:
(i) (x2 + y2) dx = 2xy dy, given that y = 0 when x = 1.
(ii) \(\frac{d y}{d x}=\frac{x y}{x^2+y^2}\) given that y = 1 when x = 0.
(iii) 2xy + y2 – 2x2 \(\frac{d y}{d x}\) = 0, given that y (1) = 2.
(iv) (x2 + 3xy + y2) dx – x2 dy = 0 given that y = 0 when x = 1.
(v) \(\frac{d y}{d x}-\frac{y}{x}\) + cosec (\(\frac{y}{x}\)) = 0, given that y = 0 when x = 1.
(vi) x \(\frac{d y}{d x}\) = y – x tan \(\left(\frac{y}{x}\right)\), given that y = \(\frac{\pi}{4}\) at x = 1.
(vii) x ey/x – y + x \(\frac{d y}{d x}\) = 0, given that y(e) = 0
Solution:
(i) Given diff. eqn. can be written as ;
\(\frac{d y}{d x}=\frac{x^2+y^2}{2 x y}\) ………………….(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Thus eqn. (1) becomes ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 18

⇒ log |1 – v2| = log |x| – log C
⇒ log |(1 – v2)x| = log C
⇒ (1 – \(\frac{y^2}{x^2}\)) x = A
⇒ x2 – y2 = Ax ……………….(1)
Given y = 0 when x = 1
∴ from (1) ; A = 1
Thus eqn. (1) becomes ;
x2 – y2 = x
which is the required particular solution.

(ii) Given \(\frac{d y}{d x}=\frac{x y}{x^2+y^2}\) ………………(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
in eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 19

(iii) Given 2xy + y2 – 2x2 \(\frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=\frac{2 x y+y^2}{2 x^2}\) …………….(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
Using eqn. (2) in eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 20

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

(iv) Given diff. eqn. can be written as ;
\(\frac{d y}{d x}=\frac{x^2+3 x y+y^2}{x^2}\) ……………..(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
in eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 21

(v) Given \(\frac{d y}{d x}-\frac{y}{x}\) + cosec (\(\frac{y}{x}\)) = 0
⇒ \(\frac{d y}{d x}\) = \(\frac{y}{x}\) – cosec \(\frac{y}{x}\) ……………..(1)
which is homogeneous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ; we have
v + x \(\frac{d v}{d x}\) = v – cosec v
⇒ x \(\frac{d v}{d x}\) = – cosec v
⇒ \(\frac{d v}{\ {cosec} v}=-\frac{d x}{x}\) ;
on integrating ; we have
⇒ ∫ sin v dv = – ∫ \(\frac{d x}{x}\)
⇒ – cos v = – log |x| + c
⇒ – cos \(\frac{y}{x}\) = – log |x| + c ……………….(2)
Since y(1) = 0 i.e. when x= 1 ; y = 0
∴ from (2); we have
– 1 = 0 + c
c = – 1
∴ From (2); we have
1 – cos \(\frac{y}{x}\) = – log |x|
cos \(\frac{y}{x}\) – 1= log | x | which is the required solution.

(vi) Given \(\frac{d y}{d x}=\frac{y}{x}-\tan \left(\frac{y}{x}\right)\) …………………..(1)
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\) in eqn. (1) ;
v + x \(\frac{d v}{d x}\) = v – tan v
⇒ x \(\frac{d v}{d x}\) = – tan v
⇒ \(\frac{d v}{\tan v}=-\frac{d x}{x}\)
On integrating both sides
\(\int \frac{d v}{\tan v}=-\int \frac{d x}{x}\) + log C
⇒ log |sin v| + log |x| = log C
⇒ x sin \(\frac{y}{x}\) = A …………………..(1)
[∵ A = ± C]
Given y = \(\frac{\pi}{4}\) at x = 1
∴ from (1) ;
\(\frac{1}{\sqrt{2}}\) = A
Thus eqn. (1) becomes ;
x tan \(\frac{y}{x}\) = \(\frac{1}{\sqrt{2}}\) be the required solution.

(vii) Given x ey/x – y + x \(\frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=\frac{y-x e^{y / x}}{x}\)
\(\frac{y}{x}-e^{y / x}\) …………………(1)
which is homogeneous diff. eqn.
put y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ From (1) ; we have
v + x \(\frac{d v}{d x}\) = v – ev
⇒ x \(\frac{d v}{d x}\) = – ev
⇒ e– v dv = – \(\frac{d x}{x}\) ;
on integrating we have
∫ e– v dv = ∫ – \(\frac{d x}{x}\)
Since y (e) = 0
i.e. when x = e; y = 0
∴ From (2);
– 1 + log |e| = c
⇒ c = 0
∴ From (2) ;
e– y/x = log |x|
⇒ \(-\frac{y}{x}\) = log (log |x|)
⇒ y = – x log (log |x|)
which is the required solution.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 17.
Solve the differential equation x dy – y dx = \(\sqrt{x^2+y^2}\) dx, given that y = 0 when x = 1.
Solution:
Given diff. eqn. can be written as ;
x dy = (y + \(\sqrt{x^2+y^2}\)) dx
⇒ \(\frac{d y}{d x}=\frac{y+\sqrt{x^2+y^2}}{x}\) ……………….(1)
putting y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
in eqn. (1) ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 22

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6

Question 18.
Show that the following differential equations are homogeneous and find their particular solutions:
(i) x \(\frac{d y}{d x}\) sin (\(\frac{y}{x}\)) + x – y sin (\(\frac{y}{x}\)) = 0, given that x = 1 when y = \(\frac{\pi}{2}\).
(ii) (x ey/x + y) dx = x dy, given that y = 0 when x = 1.
Solution:
(i) Given diff. eqn. be,

ML Aggarwal Class 12 Maths Solutions Section A Chapter 9 Differential Equations Ex 9.6 23

(ii) Given diff. eqn. be,
\(\frac{d y}{d x}=\frac{x e^{y / x}+y}{x}\) ;
putting y = vx
⇒ \(\frac{d y}{d x}\) = v + x \(\frac{d v}{d x}\)
∴ from (1) ; we get
– e v + x \(\frac{d v}{d x}\) = \(\frac{x e^v+v x}{x}\)
= ev + v
⇒ x \(\frac{d v}{d x}\) = \(\frac{x e^v+v x}{x}\)
= ev + v
⇒ x \(\frac{d v}{d x}\) = ev
⇒ \(\int \frac{d v}{e^v}=\int \frac{d x}{x}\) + C
⇒ – e-v = log |x| + C
⇒ – e-y/x = log |x| + C ……………..(1)
When x = 1, y = 1
∴ from (1) ; we get
– e-1 = c
c = – \(\frac{1}{e}\)
∴ from (1) ;
– e-y/x = log |x| – \(\frac{1}{e}\)
which is the required solution.