Well-structured OP Malhotra ISC Class 12 Solutions Chapter 22 Vectors (Continued) Ex 22(b) facilitate a deeper understanding of mathematical principles.

S Chand Class 12 ICSE Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 1.
Find \(\vec{a}\) × \(\vec{b}\) when
(i) \(\vec{a}\) = 3 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\),
\(\vec{b}\) = 2 \(\hat{i}\) + \(\hat{j}\) – \(\hat{k}\)
(ii) \(\vec{a}\) = 2 \(\hat{i}\) – 3 \(\hat{j}\) – \(\hat{k}\),
\(\vec{b}\) = \(\hat{i}\) + 4 \(\hat{j}\) – 2 \(\hat{k}\)
(iii) In (ii), verify that \(\vec{a}\) × \(\vec{b}\) ≠ \(\vec{b}\) × \(\vec{a}\)
(iv) \(\vec{a}\) = 2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\), \(\vec{b}\) = 3 \(\hat{i}\) + 4 \(\hat{j}\) – \(\hat{k}\),
verify that \(\vec{a}\) × \(\vec{b}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\).
(v) Compute \(\vec{a}\) × (\(\vec{b}\) × \(\vec{c}\)),
if \(\vec{a}\) = 7 \(\hat{i}\) – 2 \(\hat{j}\) + 3 \(\hat{k}\),
\(\vec{b}\) = 2 \(\hat{i}\) + 8 \(\hat{k}\), \(\vec{c}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\).
Answer:
(i) \(\vec{a}\) = 3 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\) and \(\vec{b}\) = 2 \(\hat{i}\) + \(\hat{j}\) – \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
3 -1 1
2 1 -1
\end{array}|\)
= \(\hat{i}\)(1 – 1) – \(\hat{j}\)(-3 – 2) + \(\hat{k}\)(3 + 2) = 0
\(\hat{i}\) + 5 \(\hat{j}\) + 5 \(\hat{k}\)

(ii) Given \(\vec{a}\) = 2 \(\hat{i}\) – 3 \(\hat{j}\) – \(\hat{k}\) and \(\vec{b}\) = \(\hat{i}\) + 4 \(\hat{j}\) – 2 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
2 -3 -1
1 4 -2
\end{array}|\)
= \(\hat{i}\)(6 + 4) – \(\hat{j}\)(-4 + 1) + \(\hat{k}\)(8 + 3)
= 10 \(\hat{i}\) + 3 \(\hat{j}\) + 11 \(\hat{k}\)

(iii) Now, \(\vec{b}\) × \(\vec{a}\)
= \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} 1 4 -2 2 -3 -1\end{array}|\)
= \(\hat{i}\)(-4 – 6) – \(\hat{j}\)(-1 + 4) + \(\hat{k}\)(-3 – 8)
= -10 \(\hat{i}\) – 3 \(\hat{j}\) – 11 \(\hat{k}\)
Thus \(\vec{a}\) × \(\vec{b}\) ≠ \(\vec{b}\) × \(\vec{a}\)

(iv) Given \(\vec{a}\) = 2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\) and \(\vec{b}\) = 3 \(\hat{i}\) + 4 \(\hat{j}\) – \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
2 -1 1
3 4 -1
\end{array}|\)
= \(\hat{i}\)(1 – 4) – \(\hat{j}\)(-2 – 3) + \(\hat{k}\)(8 + 3)
= -3 \(\hat{i}\) + 5 \(\hat{j}\) + 11 \(\hat{k}\)
(\(\vec{a}\) × \(\vec{b}\)) .\(\vec{a}\) = (-3 \(\hat{i}\) + 5 \(\hat{j}\) + 11 \(\hat{k}\)).(2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\))
= -3(2) + 5(-1) + 11(1) = -6 – 5 + 11 = 0
(\(\vec{a}\) × \(\vec{b}\)).\(\vec{b}\) = (-3 \(\hat{i}\) + 5 \(\hat{j}\) + 11 \(\hat{k}\)).(3 \(\hat{i}\) + 4 \(\hat{j}\) – \(\hat{k}\))
= (-3) 3 + 5(4) + 11(-1) = 0
Thus, \(\vec{a}\) × \(\vec{b}\) is ⊥ to \(\vec{a}\) and \(\vec{b}\).

(v) Given \(\vec{a}\) = 7 \(\hat{i}\) – 2 \(\hat{j}\) + 3 \(\hat{k}\);
\(\vec{b}\) = 2 \(\hat{i}\) + 8 \(\hat{k}\) and \(\vec{c}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{b}\) + \(\vec{c}\) = 3 \(\hat{i}\) + \(\hat{j}\) + 9 \(\hat{k}\)
Now \(\vec{a}\) × (\(\vec{b}\) + \(\vec{c}\))
= \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} 7 -2 3 3 1 9\end{array}|\)
= \(\hat{i}\)(-18 – 3) – \(\hat{j}\)(63 – 9) + \(\hat{k}\)(7 + 6)
= -21 \(\hat{i}\) – 54 \(\hat{j}\) + 13 \(\hat{k}\)

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 2.
Find |\(\vec{a}\) × \(\vec{b}\)| when
(i) \(\vec{a}\) = \(\hat{i}\) + 3 \(\hat{j}\) – 2 \(\hat{k}\),
\(\vec{b}\) = \(-\hat{i}\) + 3 \(\hat{k}\)
(ii) \(\vec{a}\) = 2 \(\hat{i}\) + \(\hat{k}\), \(\vec{b}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)
Answer:
(i) \(\vec{a}\) = \(\hat{i}\) + 3 \(\hat{j}\) – 2 \(\hat{k}\) and \(\vec{b}\) = \(-\hat{i}\) + 3 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
1 3 -2
-1 0 3
\end{array}|\)
= \(\hat{i}\)(9) – \(\hat{j}\)(3 – 2) + \(\hat{k}\)(3)
= 9 \(\hat{i}\) – \(\hat{j}\) + 3 \(\hat{k}\)
Thus |\(\vec{a}\) × \(\vec{b}\)| = \(\sqrt{9^2+(-1)^2+3^2}\)
= \(\sqrt{91}\)

(ii) Given \(\vec{a}\) = 2 \(\hat{i}\) + \(\hat{k}\) and \(\vec{b}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{ccc}
\hat{i} \hat{j} \hat{k}
2 0 1
1 1 1
\end{array}|\)
= \(\hat{i}\)(0 – 1) – \(\hat{j}\)(2 – 1) + \(\hat{k}\)(2 – 0)
= \(-\hat{i}\) – \(\hat{j}\) + 2 \(\hat{k}\)
Thus, |\(\vec{a}\) × \(\vec{b}\)| = \(\sqrt{(-1)^2+(-1)^2+2^2}\)
= \(\sqrt{1+1+4}\) = \(\sqrt{6}\)

Question 3.
If \(\vec{a}\) = 2 \(\hat{i}\) + 3 \(\hat{j}\), \(\vec{b}\) = \(-\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\) and \(\vec{c}\) = \(\hat{i}\) + 2 \( \hat{j}\) + 5 \(\hat{k}\) be three vectors, find
(i) \(\vec{a}\) × \(\vec{b}\)
(ii) \(\vec{b}\) × \(\vec{c}\)
(iii) (\(\vec{a}\) × \(\vec{b}\)) × (\(\vec{c}\) × \(\vec{b}\))
Answer:
Given \(\vec{a}\) = 2 \(\hat{i}\) + 3 \(\hat{j}\);
\(\vec{b}\) = \(-\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\) and
\(\vec{c}\) = \(\hat{i}\) + 2 \(\hat{j}\) + 5 \(\hat{k}\)

(i) ∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} 2 3 0 -1 3 1\end{array}|\)
= \(\hat{i}\)(3 – 0) – \(\hat{j}\)(2 – 0) + \(\hat{k}\)(6 + 3)
= 3 \(\hat{i}\) – 2 \(\hat{j}\) + 9 \(\hat{k}\)

(ii) \(\vec{b}\) × \(\vec{c}\) = \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} -1 3 1 1 2 5\end{array}|\)
= \(\hat{i}\)(15 – 2) – \(\hat{j}\)(-5 – 1) + \(\hat{k}\)(-2 – 3)
= 13 \(\hat{i}\) + 6 \(\hat{j}\) – 5 \(\hat{k}\)

(iii) \(\vec{a}\) – \(\vec{b}\) = (2 \(\hat{i}\) + 3 \(\hat{j}\)) – (\(-\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\))
= 3 \(\hat{i}\) + 0 \(\hat{j}\) – \(\hat{k}\)
\(\vec{c}\) – \(\vec{b}\) = (\(\hat{i}\) + 2 \(\hat{j}\) + 5 \(\hat{k}\)) – (\(-\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\))
= 2 \(\hat{i}\) – \(\hat{j}\) + 4 \(\hat{k}\)
∴(\(\vec{a}\) – \(\vec{b}\)) × (\(\vec{c}\) – \(\vec{b}\))
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
3 0 -1
2 -1 4
\end{array}|\)
= \(\hat{i}\)(0 – 1) – \(\hat{j}\)(12 + 2) + \(\hat{k}\)(-3 – 0)
= \(-\hat{i}\) – 14 \(\hat{j}\) – 3 \(\hat{k}\)

Question 4.
\(\vec{a}\) = \(\sqrt{26}\), \(|\vec{b}|\) = 7 and |\(\vec{a}\) × \(\vec{b}\)| = 35, find \(\vec{a}\). \(\vec{b}\).
Answer:
Given |\(\vec{a}\)| = \(\sqrt{26}\),
|\(\vec{b}\)| = 7 and
|\(\vec{a}\) × \(\vec{b}\)| = 35
⇒ |\(\vec{a}\)||\(\vec{b}\)|
sin θ = 35
⇒ \(\sqrt{26}\)× 7 × sinθ = 35
⇒ sinθ = \(\frac{5}{\sqrt{26}}\)
∴ cosθ = \(\sqrt{1-\sin ^2 \theta}\)
= \(\sqrt{1-\frac{25}{26}}\)
= \(\frac{1}{\sqrt{26}}\)
Thus, \(\vec{a}\).\(\vec{b}\) = |\(\vec{a}\)||\(\vec{b}\)|
cosθ = \(\sqrt{26}\) × 7 × \(\frac{1}{\sqrt{26}}\) = 7

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 5.
If \(\vec{a}\) = 3 \(\hat{i}\) – \(\hat{j}\) – 2 \(\hat{k}\) and \(\vec{b}\) = 2 \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\) find (\(\vec{a}\) + 2 \(\vec{b}\)) × (2 \(\vec{a}\) – \(\vec{b}\)).
Answer:
Given \(\vec{a}\) = 3 \(\hat{i}\) – \(\hat{j}\) – 2 \(\hat{k}\) and \(\vec{b}\) = 2 \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{a}\) + 2 \(\vec{b}\)
= 3 \(\hat{i}\) – \(\hat{j}\) – 2 \(\hat{k}\) + 2(2 \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\))
= 7 \(\hat{i}\) + 5 \(\hat{j}\) + 0 \(\hat{k}\)
2 \(\vec{a}\) – \(\vec{b}\)
= 2(3 \(\hat{i}\) – \(\hat{j}\) – 2 \(\hat{k}\)) – (2 \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\))
= 4 \(\hat{i}\) – 5 \(\hat{j}\) – 5 \(\hat{k}\)
Thus (\(\vec{a}\) + 2 \(\vec{b}\)) × (2 \(\vec{a}\) – \(\vec{b}\))
= \(|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} 7 & 5 & 0 4 & -5 & -5\end{array}|\)
= \(\hat{i}\)(-25 – 0) – \(\hat{j}\)(-35 – 0) + \(\hat{k}\)(-35 – 20)
= -25 \(\hat{i}\) + 35 \(\hat{j}\) – 55 \(\hat{k}\)

Question 6.
Find a unit vector perpendicular to the plane of the vectors.
(i) -3 \(\hat{i}\) + 4 \(\hat{k}\) and 4 \(\hat{i}\) + 3 \(\hat{j}\)
(ii) \(\vec{a}\) = 2 \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\) and \(\vec{b}\) = \(\hat{i}\) + 2 \(\hat{j}\) + \(\hat{k}\).
Answer:
(i) Let \(\vec{a}\) = -3 \(\hat{j}\) + 4 \(\hat{k}\) and \(\vec{b}\) = 4 \(\hat{i}\) + 3 \(\hat{j}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
0 -3 4
4 3 0
\end{array}|\)
= \(\hat{i}\)(0 – 12) – \(\hat{j}\)(0 – 16) + \(\hat{k}\)(0 + 12)
= -12 \(\hat{i}\) + 16 \(\hat{j}\) + 12 \(\hat{k}\)
|\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{(-12)^2+(16)^2+(12)^2}\)
= \(\sqrt{144+256+144}\)
= \(\sqrt{544}\)
= \(\sqrt{16 × 34}\)
= 4 \(\sqrt{34}\)
Thus required unit vector ⊥ to both \(\vec{a}\) and \(\vec{b}\)
= \(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\)
= \(\frac{-12 \hat{i}+16 \hat{j}+12 \hat{k}}{4 \sqrt{34}}\)
= \(\frac{-3 \hat{i}}{\sqrt{34}}\) + \(\frac{4 \hat{j}}{\sqrt{34}}+\frac{3 \hat{k}}{\sqrt{34}}\)

(ii) Given \(\vec{a}\) = 2 \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\) and \(\vec{b}\) = \(\hat{i}\) + 2 \(\hat{j}\) + \(\hat{k}\)
\(\vec{a}\) × \(\vec{b}\) =
\(|\begin{array}{ccc}
\hat{i} \hat{j} \hat{k}
2 1 1
1 2 1
\end{array}|\) = \(\hat{i}\)(1 – 2) – \(\hat{j}\)(2 – 1) + \(\hat{k}\)(4 – 1)
= \(-\hat{i}\) – \(\hat{j}\) + 3 \(\hat{k}\)
and |\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{(-1)^2+(-1)^2+3^2}\)
= \(\sqrt{11}\)
Thus, unit vector ⊥ to the plane of \(\vec{a}\) and \(\vec{b}\)
= \(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\)
= \(\frac{-\hat{i}-\hat{j}+3 \hat{k}}{\sqrt{11}}\)
= \(\frac{-1}{\sqrt{11}}(\hat{i}+\hat{j}-3 \hat{k})\)

Question 7.
(i) Find the vector of magnitude 9, which is perpendicular to both the vectors
4 \(\hat{i}\) – \(\hat{j}\) + 3 \(\hat{k}\) and 2 \(\hat{i}\) + \(\hat{j}\) – 2 \(\hat{k}\)
(ii) Find a vector whose length is 3 and which is perpendicular to both the vectors
\(\vec{a}\) = 3 \(\hat{i}\) + \(\hat{j}\) + 3 \(\hat{k}\) and -2 \(\hat{i}\) + \(\hat{j}\) – 2 \(\hat{k}\)
Answer:
(i) Let \(\vec{a}\) = 4\(\hat{i}\) – \(\hat{j}\) + 3 \(\hat{k}\) and
\(\vec{b}\) = -2 \(\hat{i}\) + \(\hat{j}\) – 2 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
4 -1 3
-2 1 -2
\end{array}|\)
= \(\hat{i}\)(2 – 3) – \(\hat{j}\)(-8 + 6) + \(\hat{k}\)(4 – 2)
= \(-\hat{i}\) + 2 \(\hat{j}\) + 2 \(\hat{k}\)
|\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{(-1)^2+2^2+2^2}\) = 3
Thus the unit vector ⊥ to both \(\vec{a}\) and \(\vec{b}\)
= \(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}\)
= \(\frac{-\hat{i}+2 \hat{j}+2 \hat{k}}{3}\)
Hence required vector of magnitude 9 which is ⊥ to \(\vec{a}\) and \(\vec{b}\).
= 9(\(\frac{-\hat{i}+2 \hat{j}+2 \hat{k}}{3}\))
= -3 \(\hat{i}\) + 6 \(\hat{j}\) + 6\(\hat{k}\)

(ii) Given \(\vec{a}\) = 3 \(\hat{i}\) + \(\hat{j}\) – 4 \(\hat{k}\) and
\(\vec{b}\) = 6 \(\hat{i}\) + 5 \(\hat{j}\) – 2 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
3 1 -4
6 5 -2
\end{array}|\)
= \(\hat{i}\)(-2 + 20) – \(\hat{j}\)(-6 + 24) + \(\hat{k}\)(15 – 6)
= 18 \(\hat{i}\) – 18 \(\hat{j}\) + 9 \(\hat{k}\)
|\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{(18)^2+(-18)^2+9^2}\)
= \(\sqrt{324+324+81}\)
= \(\sqrt{729}\) = 27
Thus required vector of magnitude 3 and ⊥ to both \(\vec{a}\) and \(\vec{b}\)
= \(\frac{3(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}\)
= \(\frac{3(18 \hat{i}-18 \hat{j}+9 \hat{k})}{27}\)
= 2 \(\hat{i}\) – 2 \(\hat{j}\) + \(\hat{k}\)

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 8.
(i) If the position vectors of the three points A, B, C are respectively \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\), \(\hat{i}\) + 3 \(\hat{j}\) – 4 \(\hat{k}\) and 7 \(\hat{i}\) + 4 \(\hat{j}\) + 9 \(\hat{k}\), find the unit vector perpendicular to the plane of the triangle ABC.
(ii) Find the unit vectors perpendicular to the plane A B C, when the position vectors of A, B and C are 2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\), \(\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\) and \(\hat{i}\) + 3 \(\hat{k}\) respectively.
(iii) Find a unit vector perpendicular to the plane determiaed by the points P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1).
Answer:
(i) Given P.V. of A = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\);
P.V. of B = 2 \(\hat{i}\) + 3 \(\hat{j}\) – 4 \(\hat{k}\) and
P.V. of C = 7 \(\hat{i}\) + 4 \(\hat{j}\) + 9 \(\hat{k}\)
∴ \(\overrightarrow{\mathrm{BA}}\)
= P.V. of A – P.V of B
= (\(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)) – (2 \(\hat{i}\) + 3 \(\hat{j}\) – 4 \(\hat{k}\))
= \(-\hat{i}\) – 2 \(\hat{j}\) + 5 \(\hat{k}\)
\(\overrightarrow{\mathrm{BC}}\)
= P.V. of C – PV of B
= (7 \(\hat{i}\) + 4 \(\hat{j}\) + 9 \(\hat{k}\)) – (2 \(\hat{i}\) + 3 \(\hat{j}\) – 4 \(\hat{k}\))
= 5 \(\hat{i}\) – \(\hat{j}\) + 13 \(\hat{k}\)
Thus \(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\) be the vector ⊥ to both \(\overrightarrow{\mathrm{BA}}\) and \(\overrightarrow{\mathrm{BC}}\)
i.e. to the plane of ∆ABC.
Now \(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\)
= \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} -1 -2 5 5 1 13\end{array}|\)
= \(\hat{i}\)(-26 – 5) – \(\hat{j}\)(-13 – 25) + \(\hat{k}\)(-1 + 10)
= -31 \(\hat{i}\) + 38 \(\hat{j}\) + 9 \(\hat{k}\)
|\(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\)|
= \(\sqrt{(-31)^2+(38)^2+9^2}\)
= \(\sqrt{2486}\)
Thus required unit vector
= \(\frac{\overrightarrow{\mathrm{BA}} \times \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}} \times \overrightarrow{\mathrm{BC}}|}\)
= \(\frac{-31 \hat{i}+38 \hat{j}+9 \hat{k}}{\sqrt{2486}}\)

(ii) Given PV. of A
= 2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\);
P.V. of B = \(\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\) and
P.V. of C = 2 \(\hat{i}\) + 3 \(\hat{k}\)
∴ \(\overrightarrow{\mathrm{BA}}\)
= P.V. of A – P.V. of B
= (2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)) – (\(\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\))
= \(\hat{i}\) – 2 \(\hat{j}\) – \(\hat{k}\)
\(\overrightarrow{\mathrm{BC}}\) = P.V. of C – P.V. of B
= 2 \(\hat{i}\) + 3 \(\hat{k}\) – (\(\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\))
= \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
∴ \(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\)
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
1 -2 -1
1 -1 1
\end{array}|\)
= \(\hat{i}\)(-2 – 1) – \(\hat{j}\)(1 + 1) + \(\hat{k}\)(-1 + 2)
= -3 \(\hat{i}\) – 2 \(\hat{j}\) + \(\hat{k}\)
|\(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\)|
= \(\sqrt{(-3)^2+(-2)^2+1^2}\)
= \(\sqrt{14}\)
Since \(\overrightarrow{\mathrm{BA}}\) × \(\overrightarrow{\mathrm{BC}}\) be the vector ⊥ to both vector \(\overrightarrow{\mathrm{BA}}\) and \(\overrightarrow{\mathrm{BC}}\) i.e. ⊥ to the plane of ∆ABC
∴ required must vector
= \(\frac{\overrightarrow{\mathrm{BA}} \times \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}} \times \overrightarrow{\mathrm{BC}}|}\)
= \(\frac{1}{\sqrt{14}}(-3 \hat{i}-2 \hat{j}+\hat{k})\)

(iii) Let \(\vec{p}\), \(\vec{q}\) and \(\vec{r}\) respectively be the position vectors of point P, Q and R.
∴ \(\vec{p}\) = \(\hat{i}\) – \(\hat{j}\) + 2 \(\hat{k}\) ; \(\vec{q}\)
= 2 \(\hat{i}\) + 0 \(\hat{j}\) – \(\hat{k}\); \(\vec{r}\)
= 0 \(\hat{i}\) + 2 \(\hat{j}\) + \(\hat{k}\)
\(\overrightarrow{\mathrm{QR}}\) = \(\vec{r}\) – \(\vec{q}\)
= 0 \(\hat{i}\) + 2 \(\hat{j}\) + \(\hat{k}\) – 2 \(\hat{i}\) – 0 \(\hat{j}\) + \(\hat{k}\)
= -2 \(\hat{i}\) + 2 \(\hat{j}\) + 2 \(\hat{k}\)
\(\overrightarrow{\mathrm{QP}}\) = \(\vec{p}\) – \(\vec{q}\)
= (\(\hat{i}\) – \(\hat{j}\) + 2 \(\hat{k}\)) – (2 \(\hat{i}\) – \(\hat{k}\))
= \(-\hat{i}\) – \(\hat{j}\) + 3 \(\hat{k}\)
Now \(\overrightarrow{\mathrm{QR}}\) × \(\overrightarrow{\mathrm{QP}}\) is a vector ⊥ to both \(\overrightarrow{\mathrm{QR}}\) and \(\overrightarrow{\mathrm{QP}}\) i.e. ⊥ to the plane of \(\overrightarrow{\mathrm{QR}}\) and \(\overrightarrow{\mathrm{QP}}\) i.e. the plane \(\mathrm{PQR}\).
∴ \(\overrightarrow{\mathrm{QR}}\) × \(\overrightarrow{\mathrm{QP}}\)
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
-2 2 2
-1 -1 3
\end{array}|\)
= \(\hat{i}\)(6 + 2) – \(\hat{j}\)(-6 + 2) + \(\hat{k}\)(2 + 2)
= 8 \(\hat{i}\) + 4 \(\hat{j}\) + 4 \(\hat{k}\)
|\(\overrightarrow{\mathrm{QR}}\) × \(\overrightarrow{\mathrm{QP}}\)|
= \(\sqrt{8^2+4^2+4^2}\)
= \(\sqrt{64+16+16}\)
= \(\sqrt{96}\)
= 4 \(\sqrt{6}\)
∴Required unit vector
= \(\frac{\overrightarrow{\mathrm{QR}} × \overrightarrow{\mathrm{QP}}}{|\overrightarrow{\mathrm{QR}} × \overrightarrow{\mathrm{QP}}|}\)
= \(\frac{8 \hat{i}+4 \hat{j}+4 \hat{k}}{4 \sqrt{6}}\)
= \(\frac{2 \hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\)

Question 9.
Find the sine of the angle between the vectors.
(i) \(\vec{a}\) = 3 \(\hat{i}\) – 4 \(\hat{j}\) + 5 \(\hat{k}\),
\(\vec{b}\) = \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
(ii) \(\hat{i}\) + \(\hat{j}\) and \(\hat{j}\) + \(\hat{k}\)
Answer:
(i) Given \(\vec{a}\) = 3 \(\hat{i}\) – 4 \(\hat{j}\) + 5 \(\hat{k}\) and \(\vec{b}\) = \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
3 -4 5
1 -1 1
\end{array}|\)
= \(\hat{i}\)(-4 + 5) – \(\hat{j}\)(3 – 5) + \(\hat{k}\)(-3 + 4)
= \(\hat{i}\) + 2 \(\hat{j}\) + \(\hat{k}\)
⇒|\(\vec{a}\) × \(\vec{b}\)| = \(\sqrt{1^2+2^2+1^2}\) = \(\sqrt{6}\)
∴ |\(\vec{a}\)| = \(\sqrt{3^2+(-4)^2+5^2}\) = \(\sqrt{50}\) = 5 \(\sqrt{2}\);
|\(\vec{b}\)| = \(\sqrt{1^2+(-1)^2+1^2}\) = \(\sqrt{3}\)
Let θ be the angle between \(\vec{a}\) and \(\vec{b}\)
∴ sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
= \(\frac{\sqrt{6}}{5 \sqrt{2} × \sqrt{3}}\) = \(\frac{1}{5}\)

(ii) Let \(\vec{a}\) = \(\hat{i}\) + \(\hat{j}\) and \(\vec{b}\) = \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{ccc}
\hat{i} \hat{j} \hat{k}
1 1 0
0 1 1
\end{array}|\)
= \(\hat{i}\)(1 – 0) – \(\hat{j}\)(1 – 0) + \(\hat{k}\)(1 – 0)
= \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
Thus, |\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{1^2+(-1)^2+1^2}\)
= \(\sqrt{3}\)
∴ |\(\vec{a}\)| = \(\sqrt{1^2+1^2}\)
= \(\sqrt{2}\) ;
|\(\vec{b}\)| = \(\sqrt{1^2+1^2}\) = \(\sqrt{2}\)
Let θ be the angle between \(\vec{a}\) and \(\vec{b}\)
∴ sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
= \(\frac{\sqrt{3}}{\sqrt{2} \times \sqrt{2}}\)
= \(\sqrt{\frac{3}{4}}\)

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 10.
Find the angle between two vectors \(\vec{a}\) and \(\vec{b}\), if |\(\vec{a}\) × \(\vec{b}\)| = \(\vec{a}\) . \(\vec{b}\).
Answer:
Let θ be the required angle between \(\vec{a}\) and \(\vec{b}\) and also given |\(\vec{a}\) × \(\vec{b}\)|
= \(\vec{a}\).\(\vec{b}\)
⇒ |\(\vec{a}\)||\(\vec{b}\)|
sin θ = | \(\vec{a}\)|| \(\vec{b}\)|
cos θ ⇒ tan θ = 1 [∵|\(\vec{a}\)| ≠ 0 and |\(\vec{b}\)| ≠ 0]
⇒ θ = \(\frac{\pi}{4}\)

Question 11.
If |\(\vec{a}\)| = 2,|\(\vec{b}\)| = 7 and \(\vec{a}\) × \(\vec{b}\)
= 3\( \hat{i}\) + 2 \(\hat{j}\) + 6 \(\hat{k}\), find the angle between \(\vec{a}\) and \(\vec{b}\).
Answer:
Given |\(\vec{a}\)| = 2 ;|\(\vec{b}\)| = 7 and \(\vec{a}\) × \(\vec{b}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) + 6 \(\hat{k}\)
Let θ be the required angle between \(\vec{a}\) and \(\vec{b}\)
Then sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
= \(\frac{|3 \hat{i}+2 \hat{j}+6 \hat{k}|}{2 \times 7}\)
arrow sinθ = \(\frac{\sqrt{3^2+2^2+6^2}}{2 \times 7}\) = \(\frac{7}{14}\)
= \(\frac{1}{2}\)
∴ θ = \(\frac{\pi}{6}\)

Question 12.
If θ is the angle between \(\vec{a}\) and \(\vec{b}\), then prove that tanθ = \(\frac{|\vec{a} \times \vec{b}|}{\vec{a} \cdot \vec{b}}\).
Answer:
Given θ be the angle between \(\vec{a}\) and \(\vec{b}\)
Then
\(\vec{a}\).\(\vec{b}\) = |\(\vec{a}\)||\(\vec{b}\)| cosθ
⇒ cosθ = \(\frac{\vec{a}\cdot \vec{b}}{|\vec{a}||\vec{b}|}\)
and
sin θ = \(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}\)
on dividing eqn. (2) by eqn. (1); we have tanθ = \(\frac{|\vec{a} \times \vec{b}|}{\vec{a} \cdot \vec{b}}\)

Question 13.
If \(\vec{a}\) = 4 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\), \(\vec{b}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\) and \(\vec{c}\) = \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\), verify that,
\(\vec{a}\) × (\(\vec{b}\) × \(\vec{c}\)) = (\(\vec{a}\) × \(\vec{b}\) + \(\vec{a}\) × \(\vec{c}\)) .
Answer:
Given \(\vec{a}\) = 4 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\);
\(\vec{b}\) = \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\) and
\(\vec{c}\) = \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{b}\) + \(\vec{c}\) = (\(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)) + (\(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)) = 2 \(\hat{i}\) + 2 \(\hat{k}\)
L.H.S. = \(\vec{a}\) × (\(\vec{b}\) + \(\vec{c}\))
= \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
4 -1 1
2 0 2
\end{array}|\)
= \(\hat{i}\)(-2 – 0) – \(\hat{j}\)(8 – 2) + \(\hat{k}\)(0 + 2)
= -2 \(\hat{i}\) – 6 \(\hat{j}\) + 2 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
4 -1 1
1 1 1
\end{array}|\)
= \(\hat{i}\)(-1 – 1) – \(\hat{j}\)(4 – 1) + \(\hat{k}\)(4 + 1)
= -2 \(\hat{i}\) – 3 \(\hat{j}\) + 5 \(\hat{k}\)
and \(\vec{a}\) × \(\vec{c}\)
= \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} 4 -1 1 1 -1 1\end{array}|\)
= \(\hat{i}\)(-1 + 1) – \(\hat{j}\)(4 – 1) + \(\hat{k}\)(-4 + 1)
= 0 \(\hat{i}\) – 3 \(\hat{j}\) – 3 \(\hat{k}\)
∴ R.H.S. = \(\vec{a}\) × \(\vec{b}\) + \(\vec{a}\) × \(\vec{c}\)
= (-2 \(\hat{i}\) – 3 \(\hat{j}\) + 5 \(\hat{k}\)) + (0 \(\hat{i}\) – 3 \(\hat{j}\) – 3 \(\hat{k}\))
= -2 \(\hat{i}\) – 6 \(\hat{j}\) + 2 \(\hat{k}\)
From eqn. (1) and eqn. (2), we have
L.H.S. = R.H.S.

Question 14.
Find the area of the parallelogram whose adjacent sides are
(i) \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\) and \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)
(ii) \(\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\) and 3 \(\hat{i}\) – 2 \(\hat{j}\) + \(\hat{k}\)
(iii) 2 \(\hat{i}\) + \(\hat{j}\) + 3 \(\hat{k}\) and \(\hat{i}\) – \(\hat{j}\)
(iv) 2 \(\hat{i}\) and 3 \(\hat{j}\).
Answer:
OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b) 1

Question 15.
Find the area of a parallelogram whose diagonals are 3 \(\hat{i}\) + 4 \(\hat{j}\) and \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\).
Answer:
Let \(\vec{a}\) = 3 \(\hat{i}\) + 4 \(\hat{j}\) and \(\vec{b}\)
= \(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{ccc}
\hat{i} \hat{j} \hat{k}
3 4 0
1 1 1
\end{array}|\)
= \(\hat{i}\)(4 – 0) – \(\hat{j}\)(3 – 0) + \(\hat{k}\)(3 – 4)
= 4 \(\hat{i}\) – 3 \(\hat{j}\) – \(\hat{k}\)
Thus |\(\vec{a}\) × \(\vec{b}\)|
= \(\sqrt{4^2+(-3)^2+(-1)^2}\)
= \(\sqrt{26}\)
∴ Required area of parallelogram having diagonals along \(\vec{a}\) and \(\vec{b}\)
= \(\frac{1}{2}|\vec{a} \times \vec{b}|\) sq. units
= \(\frac{1}{2} \sqrt{26}\) sq. units

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 16.
If \(\vec{a}\) = 2 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\), \(\vec{b}\) = \(-\hat{i}\) + \(\hat{k}\), \(\vec{c}\) = 2 \(\hat{j}\) – \(\hat{k}\), find the area of the parallelogram having diagonals \(\vec{a}\) + \(\vec{b}\) and \(\vec{b}\) + \(\vec{c}\).
Answer:
Given \(\vec{a}\) = 2 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\);
\(\vec{b}\) = \(-\hat{i}\) + \(\hat{k}\) and \(\vec{c}\)
= 2 \(\hat{j}\) – \(\hat{k}\)
∴ \(\vec{a}\) + \(\vec{b}\) = (2 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\)) + (\(-\hat{i}\) + \(\hat{k}\))
= \(\hat{i}\) – 3 \(\hat{j}\) + 2 \(\hat{k}\)
\(\vec{b}\) + \(\vec{c}\) = (\(-\hat{i}\) + \(\hat{k}\)) + (2 \(\hat{j}\) – \(\hat{k}\))
= \(-\hat{i}\) + 2 \(\hat{j}\) + 0 \(\hat{k}\)
Thus, (\(\vec{a}\) + \(\vec{b}\)) × (\(\vec{b}\) + \(\vec{c}\))
= \(|\begin{array}{rrr}\hat{i} \hat{j} \hat{k} 1 -3 2 -1 2 0\end{array}|\)
= \(\hat{i}\)(0 – 4) – \(\hat{j}\)(0 + 2) + \(\hat{k}\)(2 – 3)
= -4 \(\hat{i}\) – 2 \(\hat{j}\) – \(\hat{k}\)
∴|(\(\vec{a}\) + \(\vec{b}\)) × (\(\vec{b}\) + \(\vec{c}\))|
= \(\sqrt{(-4)^2+(-2)^2+(-1)^2}\) = \(\sqrt{21}\)
Thus required area of parallelogram = \(\frac{1}{2}|(\vec{a}+\vec{b}) × (\vec{b}+\vec{c})|\)
= \(\frac{1}{2} \sqrt{21}\) sq. units.

Question 17.
If \(\vec{p}\) and \(\vec{q}\) are unit vectors forming an angle of 30°; find the area of the parallelogram having \(\vec{a}\) = \(\vec{p}\) + \(\overrightarrow{2 q}\) and \(\vec{b}\) = 2 \(\vec{p}\) + \(\vec{q}\) as its diagonals.
Answer:
Given \(\vec{a}\) = \(\vec{p}\) + 2 \(\vec{q}\); \(\vec{b}\) = 2 \(\vec{p}\) + \(\vec{q}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= (\(\vec{p}\) + 2 \(\vec{q}\)) × (2\(\vec{p}\) + \(\vec{q}\))
= 2(\(\vec{p}\) × \(\vec{p}\)) + \(\vec{p}\) × \(\vec{q}\) + 4(\(\vec{q}\) × \(\vec{p}\)) + 2(\(\vec{q}\) × \(\vec{q}\))
= 2(0) + \(\vec{p}\) × \(\vec{q}\) – 4(\(\vec{p}\) × \(\vec{q}\)) + 2 × 0 [since \(\vec{a}\) ×\(\vec{a}\)
= 0 and \(\vec{a}\) × \(\vec{b}\)
= \(-\vec{b}\) × \(\vec{a}\)
= -3(\(\vec{p}\) × \(\vec{q}\))
Also it is given that |\(\vec{p}\)| = |\(\vec{q}\)| = 1 and
\(\frac{\pi}{6}\) be the angle between \(\vec{p}\) and \(\vec{q}\).
∴ |\(\vec{p}\) × \(\vec{q}\)| = |\(\vec{p}\)|.|\(\vec{q}\)|
sinθ = 1 × 1 × sin 30° = \(\frac{1}{2}\)
from (1); |\(\vec{a}\) × \(\vec{b}\)|
= 3|\(\vec{p}\) × \(\vec{q}\)|
= \(\frac{3}{2}\)
[using (2)]
Thus the required area of parallelogram having diagonals along \(\vec{a}\) and \(\vec{b}\)
= \(\frac{1}{2}\)|\(\vec{a}\) × \(\vec{b}\)|
= \(\frac{3}{4}\) sq. units.

Question 18.
Find the area of the triangle whose adjacent sides are determined by the vectors.
(i) \(\overrightarrow{\mathrm{OA}}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) – \(\hat{k}\), \(\overrightarrow{\mathrm{OB}}\) = \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\)
(ii) 3 \(\hat{i}\) + 4 \(\hat{j}\) and -5 \(\hat{i}\) + 7 \(\hat{j}\)
Answer:
(i) Given \(\overrightarrow{\mathrm{OA}}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) – \(\hat{k}\);
\(\overrightarrow{\mathrm{OB}}\) = \(\hat{i}\) + 3 \(\hat{j}\) + \(\hat{k}\)
Now \(\overrightarrow{\mathrm{OA}}\) × \(\overrightarrow{\mathrm{OB}}\)
= \(|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} 3 & 2 & -1 1 & 3 & 1\end{array}|\)
= \(\hat{i}\)(2 + 3) – \(\hat{j}\)(3 + 1) + \(\hat{k}\)(9 – 2)
= 5 \(\hat{i}\) – 4 \(\hat{j}\) + 7 \(\hat{k}\)
Thus area of triangle whose adjacent sides along the vector \(\overrightarrow{\mathrm{OA}}\) and \(\overrightarrow{\mathrm{OB}}\)
= \(\frac{1}{2}\)|\(\overrightarrow{\mathrm{OA}}\) × \(\overrightarrow{\mathrm{OB}}\)|
= \(\frac{1}{2}\) \(\sqrt{5^2+(-4)^2+7^2}\) sq. units
= \(\frac{1}{2}\) \(\sqrt{90}\) sq. units
= \(\frac{3}{2}\) \(\sqrt{10}\) sq. units

(ii) Let \(\vec{a}\) = 3 \(\hat{i}\) + 4 \(\hat{j}\) ;
\(\vec{b}\) = -5 \(\hat{i}\) + 7 \(\hat{j}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k}
3 & 4 & 0
-5 & 7 & 0
\end{array}|\)
= \(\hat{i}\)(0 – 0) – \(\hat{j}\)(0 – 0) + \(\hat{k}\)(21 + 20)
= 0 \(\hat{i}\) – 0 \(\hat{j}\) + 41 \(\hat{k}\)
Thus required area of ∆ having sides determined by vectors \(\vec{a}\) and \(\vec{b}\)
= \(\frac{1}{2}\)|\(\vec{a}\) × \(\vec{b}\)| sq. units
= \(\frac{1}{2}\) \(\sqrt{0^2+0^2+(41)^2}\)
= \(\frac{41}{2}\) sq. units.

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 19.
Find by vector method, the area of triangle A B C whose vertices are
(i) A(1, 3, 2), B(2, -1, 1) and C(-1, 2, 3)
(ii) A(1, 2, 3), B(2, 5, -1) and C(-1, 1, 2).
Answer:
Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be the position vectors of the vertices A, B and C of $\triangle \mathrm{ABC}$ with reference to O as origin.
∴ \(\vec{a}\) = \(\overrightarrow{\mathrm{OA}}\)
= \(\hat{i}\) + 3 \(\hat{j}\) + 2 \(\hat{k}\);
\(\vec{b}\) = \(\overrightarrow{\mathrm{OB}}\) = 2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\);
\(\vec{c}\) = \(\overrightarrow{\mathrm{OC}}\) = \(-\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\)
Thus \(\overrightarrow{\mathrm{AB}}\) = \(\vec{b}\) – \(\vec{a}\)
= (2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)) – (\(\hat{i}\) + 3 \(\hat{j}\) + 2 \(\hat{k}\))
= \(\hat{i}\) – 4 \(\hat{j}\) – \(\hat{k}\)
\(\overrightarrow{\mathrm{AC}}\) = \(\vec{c}\) – \(\vec{a}\)
= (\(-\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\)) – (\(\hat{i}\) + 3 \(\hat{j}\) + 2 \(\hat{k}\))
= -2 \(\hat{i}\) – \(\hat{j}\) + \(\hat{k}\)
∴ \(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
1 -4 -1
-2 -1 1
\end{array}|\)
= \(\hat{i}\)(-4 – 1) – \(\hat{j}\)(1 – 2) + \(\hat{k}\)(-1 – 8)
= -5 \(\hat{i}\) + \(\hat{j}\) – 9 \(\hat{k}\)
∴ \(|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|\)
= \(\sqrt{(-5)^2+1^2+(-9)^2}\)
= \(\sqrt{25+1+81}\)
= \(\sqrt{107}\)
Thus required area of ∆ABC = \(\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|\)
= \(\frac{1}{2}\) \(\sqrt{107}\) sq. units.

(ii) Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are the position vectors of the vertices A, B and C of ∆ABC with reference to O as origin.
∴ \(\vec{a}\) = \(\overrightarrow{\mathrm{OA}}\)
= \(\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\);
\(\vec{b}\) = 2 \(\hat{i}\) + 5 \(\hat{j}\) – \(\hat{k}\);
\(\vec{c}\) = \(-\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\)
Thus \(\overrightarrow{\mathrm{AB}}\) = \(\vec{b}\) – \(\vec{a}\) = (2 \(\hat{i}\) + 5 \(\hat{j}\) – \(\hat{k}\)) – (\(\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\))
= \(-\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\)
\(\overrightarrow{\mathrm{AC}}\) = \(\vec{c}\) – \(\vec{a}\)
= (\(-\hat{i}\) + \(\hat{j}\) + 2 \(\hat{k}\)) – (\(\hat{i}\) + 2 \(\hat{j}\) + 3 \(\hat{k}\))
= 2 \(\hat{i}\) – \(\hat{j}\) – \(\hat{k}\)
∴ \(\overrightarrow{\mathrm{AB}}\) × \(\overrightarrow{\mathrm{AC}}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
+1 3 -4
-2 -1 -1
\end{array}|\)
= \(\hat{i}\)(-3 – 4) – \(\hat{j}\)(-1 – 8) + \(\hat{k}\) (-1 + 6)
= -7 \(\hat{i}\) + 9 \(\hat{j}\) + 5 \(\hat{k}\)
⇒ |\(\overrightarrow{\mathrm{AB}}\) × \(\overrightarrow{\mathrm{AC}}\)|
= \(\sqrt{(-7)^2+9^2+5^2}\) = \(\sqrt{155}\)
∴ Required area of ∆ABC
= \(\frac{1}{2}\)|\(\overrightarrow{\mathrm{AB}}\) × \(\overrightarrow{\mathrm{AC}}\)|
= \(\frac{1}{2}\) \(\sqrt{155}\) sq. units.

Question 20.
Show that the points whose position vectors are given below, are collinear.
(i) \(\vec{a}\) – 2 \(\vec{b}\) + 3 \(\vec{c}\), 2 \(\vec{a}\) + 3 \(\vec{b}\) – 4 \(\vec{c}\) and -7 \(\vec{b}\) + 10 \(\vec{c}\)
(ii) 5 \(\hat{i}\) + 6 \(\hat{j}\) + 7 \(\hat{k}\), 7 \(\hat{i}\) – 8 \(\hat{j}\) + 9 \(\hat{k}\) and 3 \(\hat{i}\) + 20 \(\hat{j}\) + 5 \(\hat{k}\)
Answer:
(i) Let \(\vec{α}\), \(\vec{\beta}\), \(\vec{\gamma}\) are the position vectors of given points
Then \(\vec{α}\) = \(\vec{a}\) – 2 \(\vec{b}\) + 3 \(\vec{c}\);
\(\vec{\beta}\) = 2 \(\vec{a}\) + 3 \(\vec{b}\) – 4 \(\vec{c}\) and
\(\vec{\gamma}\) = -7 \(\vec{b}\) + 10 \(\vec{c}\)
Here \(\vec{α}\) × \(\vec{\beta}\)
= (\(\vec{a}\) – 2 \(\vec{b}\) + 3 \(\vec{c}\)) × (2 \(\vec{a}\) + 3 \(\vec{b}\) – 4 \(\vec{c}\))
= 2(\(\vec{a}\) × \(\vec{a}\)) + 3(\(\vec{a}\) × \(\vec{b}\)) – 4(\(\vec{a}\) × \(\vec{c}\)) – 4(\(\vec{b}\) × \(\vec{a}\)) – 6(\(\vec{b}\) × \(\vec{b}\)) + 8(\(\vec{b}\) × \(\vec{c}\)) ……………. (1)
= 7(\(\vec{a}\) × \(\vec{b}\)) – \(\vec{b}\) × \(\vec{c}\) + 10(\(\vec{c}\) × \(\vec{a}\))
\(\vec{\beta}\) × \(\vec{\gamma}\) = (2 \(\vec{a}\) + 3 \(\vec{b}\) – 4 \(\vec{c}\)) × (-7 \(\vec{b}\) + 10 \(\vec{c}\)) + 9(\(\vec{c}\) × \(\vec{b}\)) – 12(\(\vec{c}\) × \(\vec{b}\))
= -14(\(\vec{a}\) × \(\vec{b}\)) + 20(\(\vec{a}\) × \(\vec{c}\)) – 21(\(\vec{b}\) × \(\vec{b}\)) + 30(\(\vec{b}\) × \(\vec{c}\)) + 28(\(\vec{c}\) × \(\vec{b}\)) + 40(\(\vec{c}\) × \(\vec{c}\))
= -14(\(\vec{a}\) × \(\vec{b}\)) + 2(\(\vec{b}\) × \(\vec{c}\)) – 20(\(\vec{c}\) × \(\vec{a}\)) ………………… (2)
\(\vec{\gamma}\) × \(\vec{α}\) = (-7 \(\vec{a}\) + 10 \(\vec{c}\)) × (\(\vec{a}\) – 2 \(\vec{b}\) + 3 \(\vec{c}\))
= -7(\(\vec{b}\) × \(\vec{a}\)) + 14(\(\vec{b}\) × \(\vec{b}\)) – 21(\(\vec{b}\) × \(\vec{c}\)) + 10(\(\vec{c}\) × \(\vec{a}\)) – 20(\(\vec{c}\) × \(\vec{b}\)) + 30(\(\vec{c}\) × \(\vec{c}\))
= 7(\(\vec{a}\) × \(\vec{b}\)) – (\(\vec{b}\) × \(\vec{c}\)) + 10(\(\vec{c}\) × \(\vec{a}\))
on adding (1), (2) and (3); we have
\(\vec{a}\) × \(\vec{b}\) + \(\vec{b}\) × \(\vec{c}\) + \(\vec{c}\) × \(\vec{a}\) = \(\overrightarrow{0}\)
We know that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are collinear points if \(\vec{a}\) × \(\vec{b}\) +\(\vec{b}\) × \(\vec{c}\) + \(\vec{c}\) × \(\vec{a}\)
= \(\overrightarrow{0}\) Hence given points are collinear.

(ii) Let \(\vec{a}\) = 5 \(\hat{i}\) + 6 \(\hat{j}\) + 7 \(\hat{k}\);
\(\vec{b}\) = 7 \(\hat{i}\) – 8 \(\hat{j}\) + 9 \(\hat{k}\) and
\(\vec{c}\) = 3 \(\hat{i}\) + 20 \(\hat{j}\) + 5 \(\hat{k}\)
Here
\(\vec{a}\) × \(\vec{j}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
5 6 7
7 -8 9
\end{array}|\)
= \(\hat{i}\)(54 + 56) – \(\hat{j}\)(45 – 49) + \(\hat{k}\)(-40 – 42)
= 110 \(\hat{i}\) + 4 \(\hat{j}\) – 82 \(\hat{k}\)
\(\vec{b}\) × \(\vec{c}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
7 -8 9
3 20 5
\end{array}|\)
= \(\hat{i}\)(-40 – 180) – \(\hat{j}\)(35 – 27) + \(\hat{k}\)(140 + 24)
= -220 \(\hat{i}\) – 8 \(\hat{j}\) + 164 \(\hat{k}\)
and
\(\vec{c}\) × \(\vec{a}\) = \(|\begin{array}{rrr}
\hat{i} \hat{j} \hat{k}
3 20 5
5 6 7
\end{array}|\)
= \(\hat{i}\)(140 – 30) – \(\hat{j}\)(21 – 25) + \(\hat{k}\)(18 – 100)
= -110 \(\hat{i}\) + 4 \(\hat{j}\) – 82 \(\hat{k}\)
∴ \(\vec{a}\) × \(\vec{b}\) + \(\vec{b}\) × \(\vec{c}\) + \(\vec{c}\) × \(\vec{a}\) = \(\overrightarrow{0}\)
Thus given points are collinear.
[since area of δ formed by three points as vertices = \(\frac{1}{2}\)|\(\vec{a}\) × \(\vec{b}\) + \(\vec{b}\) × \(\vec{c}\) + \(\vec{c}\) × \(\vec{a}\)| = 0 ]

Question 21.
Find λ such that \(\vec{a}\) = \(\hat{i}\) + λ \(\hat{j}\) + 3 \(\hat{k}\) and \(\vec{b}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) + 9 \(\hat{k}\) are parallel.
Answer:
Given \(\vec{a}\) = \(\hat{i}\) + λ \(\hat{j}\) + 3 \(\hat{k}\) and
\(\vec{b}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) + 9 \(\hat{k}\)
Here \(\vec{a}\) × \(\vec{b}\)
= \(|\begin{array}{ccc}\hat{i} \hat{j} \hat{k} 1 λ 3 3 2 9\end{array}|\)
= \(\hat{i}\)(9 λ – 6) – \(\hat{j}\)(9 – 9) + \(\hat{k}\)(2-3 λ)
= (9 λ – 6) \(\hat{i}\) + 0 \(\hat{j}\) + (2 – 3 λ) \(\hat{k}\)
Since \(\vec{a}\) is parallel to \(\vec{b}\)
∴ \(\vec{a}\) × \(\vec{b}\)
= \(\overrightarrow{0}\) (9 λ – 6) \(\hat{i}\) + 0 \(\hat{j}\) + (2 – 3 λ) \(\hat{k}\)
= \(\overrightarrow{0}\) = 0 \(\hat{i}\) + 0 \(\hat{j}\) + 0 \(\hat{k}\)
⇒ 9 λ = 6
⇒ λ = \(\frac{2}{3}\)

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 22.
Find the values of a for which the vectors 3 \(\hat{i}\) + 2 \(\hat{j}\) + 9 \(\hat{k}\) and \(\hat{i}\) + a \(\hat{j}\) + 3 \(\hat{k}\) are
(i) perpendicular
(ii) parallel.
Answer:
(i) Let \(\vec{α}\) = 3 \(\hat{i}\) + 2 \(\hat{j}\) + 9 \(\hat{k}\) and \(\vec{\beta}\) = \(\hat{i}\) + a \(\hat{j}\) + 3 \(\hat{k}\)
Now \(\vec{α}\) ⊥ \(\vec{\beta}\)
∴ \(\vec{α}\) . \(\vec{\beta}\) = 0
⇒ (3 \(\hat{i}\) + 2 \(\hat{j}\) + 9 \(\hat{k}\)) .(\(\hat{i}\) + 9 \(\hat{j}\) + 3 \(\hat{k}\)) = 0
⇒ 3(1) + 2(a) + 9(3) = 0
⇒ 2 a + 30 = 0
⇒ a = -15

(ii) Now \(\vec{α}\) || \(\vec{\beta}\)
∴ \(\vec{α}\) × \(\vec{\beta}\)
= \(\overrightarrow{0}\)
⇒ \(|\begin{array}{lll}
\hat{i} \hat{j} \hat{k}
3 2 9
1 a 3
\end{array}|\) = 0
⇒ \(\hat{i}\)(6 – 9 a) + \(\hat{j}\)(9 – 9) + \(\hat{k}\)(3 a – 2)
= \(\overrightarrow{0}\)
= 0 \(\hat{i}\) + 0 \(\hat{j}\) + 0 \(\hat{k}\)
⇒ 6 – 9 a = 0
⇒ a = \(\frac{2}{3}\)

Question 23.
Find a unit vector parallel to the x y plane and perpendicular to the vector 4 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\).
Answer:
We know that a vector || to XOY plane is of the form α \(\hat{i}\) + β \(\hat{j}\)
(For XOY plane, z = 0 )
Now α \(\hat{i}\) + β \(\hat{j}\) is ⊥ to 4 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\)
∴ (c \(\hat{i}\) + β \(\hat{j}\)).(4 \(\hat{i}\) – 3 \(\hat{j}\) + \(\hat{k}\)) = 0
⇒ 4 α – 3β = 0
⇒ β = \(\frac{4 α}{3}\)
∴\(\vec{c}\) = α \(\hat{i}\) + β \(\hat{j}\)
= α \(\hat{i}\) + \(\frac{4 α}{3}\) \(\hat{j}\)
= \(\frac{α}{3}\)(3 \(\hat{i}\) + 4 \(\hat{j}\))
Hence the required unit vector = \(\frac{\frac{α}{3}(3 \hat{i}+4 \hat{j})}{|\frac{α}{3}| \sqrt{3^2+4^2}}\)
= ± \(\frac{1}{5}\)(3 \(\hat{i}\) + 4 \(\hat{j}\))

Question 24.
By vector method obtain the perpendi- cular distance of the point (6,-4,4) from the line passing through the points (2,1,2) and (3,-1,4).
Answer:
OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b) 2

Question 25.
Given, \(\vec{a}\) = \(\frac{1}{7}\)(2 \(\hat{i}\) + 3 \(\hat{j}\) + 6 \(\hat{k}\)), \(\vec{b}\) = \(\frac{1}{7}\)(3 \(\hat{i}\) – 6 \(\hat{j}\) + 2 \(\hat{k}\)), \(\vec{c}\) = \(\frac{1}{7}\)(6 \(\hat{i}\) + 2 \(\hat{j}\) – 3 \(\hat{k}\)), \(\hat{i}\), \(\hat{j}\), \(\hat{k}\) being a right handed orthogonal system of unit vectors in space, show that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) is also another system of unit vectors mutually perpendicular.
Answer:
OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b) 3

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 26.
\(\vec{a}\), \(\vec{b}\), \(\vec{c}\) represnets three sides \(\overrightarrow{B C}\), \(\overrightarrow{C A}\) and \(\overrightarrow{A B}\) of a ∆A B C such that |\(\vec{a}\)| = 13,
|\(\vec{b}\)|= 14, |\(\vec{c}\)|= 15 Find < C.
Answer:
Given |\(\vec{a}\)| = 13 ;
|\(\vec{b}\)| = 14 and |\(\vec{c}\)| = 15
∴ a2 = |\(\vec{a}\)|2 = 169 ;
b2 = |\(\vec{b}\)|2 = 196 and c2 = |\(\vec{c}\)|2 = 225
Then by cosine’s formula, we have
cos C= \(\frac{a^2+b^2-c^2}{2 a b}\)
= \(\frac{169+196-225}{2 \times 13 \times 14}\)
∴ cos C = \(\frac{365-225}{2 \times 13 \times 14}\)
= \(\frac{140}{2 \times 13 \times 14}\)
= \(\frac{5}{13}\)
⇒ c = cos-1 (\(\frac{5}{13}\))

Question 27.
\(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are three vectors such that \(\vec{a}\).\(\vec{b}\) = \(\vec{b}\) \( \vec{c}\) ; \(\vec{a}\) × \(\vec{b}\) = \(\vec{a}\) × \(\vec{c}\), \(\vec{a}\) ≠ 0 prove that \(\vec{b}\) ≠ \(\vec{c}\).
Answer:
Given \(\vec{a}\).\(\vec{b}\) = \(\vec{a}\).\(\vec{c}\)
⇒ \(\vec{a}\).\(\vec{b}\) – \(\vec{a}\).\(\vec{c}\) = \(\overrightarrow{0}\)
⇒ \(\vec{a}\) .(\(\vec{b}\) – \(\vec{c}\)) = 0
⇒ \(\vec{a}\) =\(\overrightarrow{0}\) or \(\vec{b}\) – \(\vec{c}\)
= \(\overrightarrow{0}\) or \(\vec{a}\) ⊥ \(\vec{b}\) – \(\vec{c}\)
but \(\vec{a}\) ≠ \(\overrightarrow{0}\)
∴ \(\vec{b}\) – \(\vec{c}\) = \(\overrightarrow{0}\) or \(\vec{a}\) ⊥\(\vec{b}\) – \(\vec{c}\)
Also given \(\vec{a}\) × \(\vec{b}\) = \(\vec{a}\) × \(\vec{c}\)
⇒ \(\vec{a}\) × (\(\vec{b}\) – \(\vec{c}\)) = \(\overrightarrow{0}\)
⇒ either \(\vec{a}\) = \(\overrightarrow{0}\) or \(\vec{b}\) – \(\vec{c}\)
= \(\overrightarrow{0}\) or \(\vec{a}\) ||
\(\vec{b}[latex] – [latex]\vec{c}\)
since \(\vec{a}\) ≠\(\overrightarrow{0} \)
∴ \(\vec{b}\) – \(\vec{c}\) = \(\overrightarrow{0}\) or \(\vec{a}\) || \(\vec{b}\) – \(\vec{c}\)
Now \(\vec{a}[latex] can never be ⊥ and || to [latex]\vec{b}\) – \(\vec{c}\)
simultaneously
[From eqn. (1) and eqn. (2)]
Thus, \(\vec{b}\) – \(\vec{c}\) = 0
⇒ \(\vec{b}\) = \(\vec{c}\)

Question 28.
If \(\vec{r}\) = x \(\hat{i}\) + y \(\hat{j}\) + z \(\hat{k}\) then show that
(i) (\(\vec{r}\) × \(\hat{i}\))2 = y2 + z2
(ii) (\(\vec{r}\) × \(\hat{i}\)) .(\(\vec{r}\) × \(\hat{j}\))+x y=0
Answer:
Given \(\vec{r}\) = x \(\hat{i}\) + y \(\hat{j}\) + z \(\hat{k}\)
(i) \(\vec{r}\) × \(\hat{i}\) = (x \(\hat{i}\) + y \(\hat{j}\) + z \(\hat{k}\)) × \(\hat{i}\)
= x(\(\hat{i}\) × \(\hat{i}\)) + y(\(\hat{j}\) × \(\hat{i}\)) + z(\(\hat{k}\) × \(\hat{i}\))
= x(0) + y(\(-\hat{k}\)) + z(\(\hat{j}\))
= +z \(\hat{j}\) – y \(\hat{k}\)
∴ (\(\vec{r}\) × \(\hat{i}\))2
= |\(\vec{r}\) × \(\hat{i}\)|2
= (\(\sqrt{z^2+(-y)^2}\))2
= y2 + z2

(ii) \(\vec{r}\) × \(\hat{j}\) = (x \(\hat{i}\) + y \(\hat{j}\) + z \(\hat{k}\)) × \(\hat{j}\)
= x(\(\hat{i}\) × \(\hat{j}\)) + y(\(\hat{j}\) × \(\hat{j}\)) + z(\(\hat{k}\) × \(\hat{j}\))
= x \(\hat{k}\) + y(0) +z(\(-\hat{i}\))
= x \(\hat{k}\) – z \(\hat{i}\)
Thus, (\(\vec{r}\) × \(\hat{i}\)).(\(\vec{r}\) × \(\hat{j}\))
= (z \(\hat{j}\) – y \(\hat{k}\)).(-z \(\hat{i}\) – x \(\hat{k}\))
= 0(-z) + z(0) – y(x)
⇒ (\(\vec{r}\) × \(\hat{i}\)).(\(\vec{r}\) × \(\hat{j}\)) + x y = 0

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b)

Question 29.
For any vector \(\vec{a}\), prove that |\(\vec{a}\) × \(\hat{i}\)|2 + |\(\vec{a}\) × \(\hat{j}\)|2 + |\(\vec{a}\) × \(\hat{k}\)|2 = 2|\(\vec{a}\)|2
Answer:

OP Malhotra Class 12 Maths Solutions Chapter 22 Vectors (Continued) Ex 22(b) 4

Leave a Reply

Your email address will not be published. Required fields are marked *