The availability of Class 11 OP Malhotra Solutions Chapter 14 Sequence and Series Ex 14(g) encourages students to tackle difficult exercises.

S Chand Class 11 ICSE Maths Solutions Chapter 14 Sequence and Series Ex 14(g)

Question 1.
Find three numbers in G.P. whose sum is 19 and product is 216 .
Solution:
Let the three numbers in G.P are \(\frac { a }{ r }\), a, ar and their product = 216
⇒ \(\frac { a }{ r }\) × a × ar = 216 ⇒ a3 = 63 ⇒ a = 6
Also given their sum is 19 .
∴ \(\frac { a }{ r }\) + a + ar = 19 ⇒ \(\frac { 6 }{ r }\) + 6 + 6r = 19
⇒ 6 + 6r + 6r2 = 19r
⇒ 6 r2 – 13r + 6 = 0
⇒ r = \(\frac{13 \pm \sqrt{169-144}}{12}\) = \(=\frac{13 \pm 5}{12}\)
⇒ r = \(\frac { 3 }{ 2 }\), \(\frac { 2 }{ 3 }\)
When a = 6 and r = \(\frac { 3 }{ 2 }\)
Then required numbers are \(\frac{6}{\frac{3}{2}}\), 6, 6 × \(\frac { 3 }{ 2 }\)
i.e. 4. 6. 9
when r = 6, r = \(\frac { 2 }{ 3 }\)
Then required numbers are \(\frac{6}{\frac{2}{3}}\), 6, 6 × \(\frac { 2 }{ 3 }\)
i.e. 9, 6, 4.

Question 2.
The sum of the first terms of a G.P. is \(\frac { 13 }{ 12 }\) and their product is -1. Find the G.P.
Solution:
Let the required G.P be, a, ar, ar2 …….
it is given that a + ar + ar2 = \(\frac { 13 }{ 12 }\) …(1)
Also (a) (ar) (ar2) = -1 ⇒ (ar)3 = -1
⇒ ar = – 1 ⇒ a = –\(\frac { 1 }{ r }\) …(2)
∴ from (1) and (2); we have
–\(\frac { 1 }{ r }\)–\(\frac { 1 }{ r }\) × r – \(\frac { 1 }{ r }\) × r2 = \(\frac { 13 }{ 12 }\)
⇒ – \(\frac { 1 }{ r }\) – 1 – r = \(\frac { 13 }{ 12 }\)
⇒ – 1 – r – r2 = \(\frac { 13r }{ 12 }\)
⇒ – 12 – 12r – 12r2 = 13r
⇒ 12r2 + 25r + 12 = 0
∴ r = \(\frac{-25 \pm \sqrt{625-576}}{24}\) = \(\frac{-25 \pm 7}{24}\)
⇒ r = –\(\frac { 32 }{ 24 }\), –\(\frac { 18 }{ 24 }\) i.e. –\(\frac { 4 }{ 3 }\), –\(\frac { 3 }{ 4 }\)
Thus required G.P be;
\(\frac { 3 }{ 4 }\), \(\frac { 3 }{ 4 }\) × \(\left(-\frac{4}{3}\right)\), \(\frac { 3 }{ 4 }\) \(\left(-\frac{4}{3}\right)^2\) …..
i.e. \(\frac { 3 }{ 4 }\), -1, \(\frac { 4 }{ 3 }\), …..
when r = –\(\frac { 3 }{ 4 }\)
∴ from (2); a = \(\frac { 4 }{ 3 }\)
Thus required G.P be;
\(\frac { 4 }{ 3 }\), \(\frac { 4 }{ 3 }\) × \(\left(-\frac{3}{4}\right)\), \(\frac{4}{3}\) \(\left(-\frac{3}{4}\right)^2\) ……
i.e. \(\frac { 4 }{ 3 }\), -1, \(\frac { 3 }{ 4 }\), …….

OP Malhotra Class 11 Maths Solutions Chapter 14 Sequence and Series Ex 14(g)

Question 3.
The product of first three terms of a G.P. is 1000 . If we add 6 to its second term and 7 to its third term, the resulting three terms form an A.P. Find the terms of the G.P.
Solution:
Let the required G.P be a, ar, ar2, ……
it is given that a, ar, ar2 = 1000
⇒ (ar)3 =103 ⇒ ar = 10
⇒ a = \(\frac { 10 }{ r }\) …(1)
it is given that by adding 6 to second term and 7 to third term then the resulting terms are in A.P.
i.e. a, ar + 6, ar2 + 7 forms A.P.
⇒ 2(ar + 6) = a + ar2 + 7
⇒ 2(10 + 6) = \(\frac { 10 }{ r }\) + \(\frac { 10 }{ r }\) . r2 + 7
⇒ 32 = \(\frac { 10 }{ r }\) + 10r + 7
⇒ 10r2 + 7r + 10 = 32r
⇒ 10r2 – 25r + 10 = 0
⇒ 2r2 – 5r + 2 = 0
⇒ (r – 2)(2r – 1) = 0 ⇒ r = 2, \(\frac { 1 }{ 2 }\)
when r = 2 ∴ from (1); a = \(\frac { 10 }{ 5 }\) = 5
and infinite G.P be, 5, 10, 20, …….
when r = \(\frac { 1 }{ 2 }\)
∴ from (1); a = \(\frac{10}{\frac{1}{2}}\) = 20
and infinite G.P be, 20, 20 × \(\frac { 1 }{ 2 }\), 20 × \(\left(\frac{1}{2}\right)^2\), …..
i.e. 20, 10, 5, …..

Question 4.
If a, b, c are in G.P show that the following are also in G.P
(i) \(\frac { 1 }{ a }\), \(\frac { 1 }{ b }\), \(\frac { 1 }{ c }\)
(ii) \(\frac{1}{a^2}\), \(\frac{1}{b^2}\), \(\frac{1}{c^2}\)
(iii) a2, b2, c2
(iv) b2c2, c2a2, a2b2
Solution:
(i) Given a, b, c are in G.P
∴ b2 = ac …(1)
⇒ \(\frac { 1 }{ ac }\) = \(\frac{1}{b^2}\) ⇒ \(\left(\frac{1}{b}\right)^2\) = \(\frac { 1 }{ a }\) × \(\frac { 1 }{ c }\)
⇒ \(\frac { 1 }{ a }\), \(\frac { 1 }{ b }\), \(\frac { 1 }{ c }\) are in G.P

(ii) On squaring eqn. (1); we have b4 = a2c2
⇒ \(\frac{1}{a^2 c^2}\) = \(\frac{1}{b^4}\) ⇒ \(\frac{1}{a^2}\) × \(\frac{1}{c^2}\) = \(\left(\frac{1}{b^2}\right)^2\)
⇒ \(\frac{1}{a^2}\), \(\frac{1}{b^2}\), \(\frac{1}{c^2}\) are in G.P

(iii) On squaring eqn. (1) ; we have
b4 = (ac)2 = a2 c2 ⇒ (b2)2 = a2 × c2
Thus, a2, b2 and c2 are in G.P.

(iv) On squaring eqn. (1); we iave
b4 = a2 c2
Again squaring ; we have
⇒ (b4)2 = (a2c2)2
⇒ b4 . b4 = (a2c2)2
⇒ b4a2c2 = (a2 c2)2
⇒ (a2b2) (b2c2) = (a2c2)2
Thus b2c2, a2c2 and a2 b2 are in G.P.

OP Malhotra Class 11 Maths Solutions Chapter 14 Sequence and Series Ex 14(g)

Question 5.
If a, b, c, d are in G.P., show that the following are also in G.P.
(i) a + b, b + c, c + d
(ii) a2 + b2, b2 + c2, c2 + d2
Solution:
Given a, b, c and d are in G.P.
∴ \(\frac{b}{a}\) = \(\frac{c}{b}\) = \(\frac{d}{c}\) = r (say)
⇒ b = ar ; c = br = ar2; d = cr = ar3

(i) Here, (b + c)2 = (ar + ar2)2
= a2r2(1 + r)2
and (a + b)(c + d) = (a + ar) (ar2 + ar3)
= a(1 + r) ar2(1 + r)
= a2r2(1 + r)2
∴ (b + c)2 = (a + b)(c + d)
Thus a + b, b + c and c + d are in G.P.

(ii) Here, (b2 + c2)2 = (a2r2 + a2r4)2
= (a2r2)2[1 + r2]2
= a4r4(1 + r2)2
and (a2 + b2) (c2 + d2)
= (a2 + a2r2) (a2r4 + a2r6)
= a2(1 + r2) a2r4(1 + r2)
= a4r4(1 + r2)2
∴ (b2 + c2)2 = (a2 + b2) (c2 + d2)
Thus a2 + b2, b2 + c2 and c2 + d2 are in G.P.

Question 6.
If a, b, c, d are in G.P., prove that
(i) (b + c)(b + d) = (c + a)(c + d)
(ii) (a – d)2 = (b – c)2 + (c – a)2 + (d – b)2
Solution:
Given a, b, c and d are in G.P
∴ \(\frac { b }{ a }\) = \(\frac { c }{ b }\) = \(\frac { d }{ c }\) = r ≠ 0 (say)
∴ b = ar; c = br = ar2; d = cr = ar3

(i) L.H.S = (b + c)(b + d)
= (ar + ar2) (ar + ar3)
= ar(1 + r) ar(1 + r2)
= a2r2(1 + r) (1 + r2)
R.H.S = (c + a)(c + d)
= (ar2 + a) (ar2 + ar3)
= a(r2 + 1) ar2(1 + r)
= a2r2(1 + r) (1 + r2)
∴ L.H.S = R.H.S

(ii) L.H.S = (a – d)2 = (a – ar3)2
= a2 (1 – r3)2
R.H.S = (b – c)2 + (c – a)2 + (d – b)2
= (ar – ar2)2 + (ar2 – a)2 + (ar3 – ar)2
= (ar)2(1 – r)2 + a2(r2 – 1)2 + (ar)2 (r2 – 1)2
= a2[r2(1 – r)2 + (r2 – 1)2 + r2(r2 – 1)2]
= a2[r2(1 – r)2 + (r2 – 1)2 (1 + r2)]
= a2(1 – r)2 [r2 + (r + 1)2(1 + r2)]
= a2(1 – r)2[r2 + (r2 + 2r + 1) (1 + r2)]
= a2(1 – r)2[r2 + (1 + r2)2 + 2r (1 + r2)]
= a2(1 – r)2 (r + 1 + r2)2
= a2[(1 – r) (1 + r + r2)]2
= a2(1 – r3)2
∴ L.H.S = R.H.S

Question 7.
If the pth, rth and rth terms of an A.P. are in G.P., prove that the common ratio of the G.P. is \(\frac{q-r}{p-q}\).
Solution:
Let a be the first term and d be the common difference of A.P respectively.
Since Tp, Tq/sub> and Tr are in G.P.
∴ Common ratio = \(\frac{\mathrm{T}_q}{\mathrm{~T}_p}\) = \(\frac{\mathrm{T}_r}{\mathrm{~T}_q}\)
= \(\frac{a+(q-1) d}{a+(p-1) d}\) = \(\frac{a+(r-1) d}{a+(q-1) d}\)
= \(\frac{(q-1-r+1) d}{(p-1-q+1) d}\) = \(\frac{q-r}{p-q}\)

Question 8.
If \(\frac{1}{x+y}\), \(\frac{1}{2 y}\), \(\frac{1}{y+z}\) are the three consecutive terms of an A.P. prove that x, y, z are the three consecutive terms of a G.P.
Solution:
Since \(\frac{1}{x+y}\), \(\frac{1}{2 y}\) and \(\frac{1}{y+z}\) are three consecutive terms of A.P.
⇒ \(\frac{1}{2 y}\) – \(\frac{1}{x+y}\) = \(\frac{1}{y+z}\) – \(\frac{1}{2 y}\)
⇒ \(\frac{x+y-2 y}{2 y(x+y)}\) = \(\frac{2 y-y-z}{2 y(y+z)}\)
⇒ \(\frac{x-y}{2 y(x+y)}\) = \(\frac{y-z}{2 y(y+z)}\)
⇒ (x – y)(y + z) = (x + y)(y – z)
⇒ xy + xz – y2 – yz = xy – xz + y2 – yz
⇒ 2y2 = 2xz ⇒ y2 = xz
Thus x, y and z are in G.P.

Leave a Reply

Your email address will not be published. Required fields are marked *