Students can cross-reference their work with ML Aggarwal Class 12 Solutions Chapter 7 Applications of Derivatives Ex 7.7 to ensure accuracy.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

Question 1.
Find the turning points of the following functions and distinguish between them. Also find the local maximum and minimum values of the functions :
(i) f(x) = 2x3 – 21x2 + 36x – 20
(ii) f(x) = x3 – 3x + 3x. (NCERT)
Solution:
(i) Given f(x) = 2x3 – 21x2 + 36x – 20 ………….(1)
Diff. both sides of eqn. (1) w.r.t. x ; we have
f'(x) = 6x2 – 42x + 36
= 6 (x2 – 7x + 6)
For maxima / minima, we put f'(x) = 0
⇒ 6 (x2 – 7x + 6) = 0
⇒ 6 (x – 1) (x – 6) = 0
⇒ x = 1, 6
∴ f”(x) = 12x – 42.

Case – I :
When x = 1
f”(1)= 12 – 42 = – 30 < 0
∴ x = 1 is a point of local maxima. and local maximum value
= 2 – 21 + 36 – 20 = – 3

Case – II :
When x = 6
∴ f”(6) = 72 – 42
= 30 > 0
Thus, x = 6 be a point of local minima, and local minimum value = f(6)
= 432 – 756 + 216 – 20
= 648 – 776 = – 128.

(ii) Given f(x) = x3 – 3x2 + 3x
∴ f (x) = 3x2 – 6x + 3
∴ f”(x) = 6x – 6
For turning points, we have f'(x) = 0
⇒ 3x2 – 6x + 3 = 0
⇒3(x22 – 2x + 1) = 0
⇒ (x – 1)2 = 0
⇒ x = 1
Thus, x = 1 be the only critical point.
f”(1) = 6 – 6 = 0
Now f”‘ (x) = 6 i.e. f” (1) = 6 ≠ 0
∴ x = 1 be the point of inflexion.
i.e. x = 1 be a point of neither maxima nor minima.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

Question 1(old).
(ii) f(x) = 4x3 + 19x2 – 14x + 3
Solution:
Given f(x) = 4x3 + 19x2 – 14x + 3 ……………(1)
Diff. both sides eqn. (1) w.r.t. x ; we have
f'(x)= 12x2 + 38x – 14
For maxima/minima, we put f'(x) = 0
⇒ 2 (6x2 + 19x – 7) = 0
⇒ 6x2 + 21x – 2x – 7 = 0
⇒ 3x (2x + 7) – 1 (2x + 7) = 0
⇒ (2x + 7) (3x – 1) = 0
⇒ x = – \(\frac{7}{2}\), \(\frac{1}{3}\)
∴ f”(x) = 24x + 38

Case – I :
at x = – \(\frac{7}{2}\)
∴ f”(- \(\frac{7}{2}\)) = 24 (- \(\frac{7}{2}\)) + 38
= – 84 + 38
= – 46 < 0
∴ x = – \(\frac{7}{2}\) be a point of local maxima. and max. value
= f(- \(\frac{7}{2}\))
= \(-\frac{343}{2}+\frac{931}{4}\) + 49 + 3
= \(\frac{453}{4}\)

Case – II :
When x = \(\frac{1}{3}\)
∴ f”(\(\frac{1}{3}\)) = 8 + 38
= 46 > 0
Thus, x = \(\frac{1}{3}\) be a point of local minima.
and local minimum value = f(\(\frac{1}{3}\))
= \(\frac{4}{27}+\frac{19}{9}-\frac{14}{3}\) + 3
= \(\frac{4+57-126+81}{27}\)
= \(+\frac{16}{27}\)

Question 2.
Find the coordinates of stationary points on the curve y = x3 – 3x2 – 9x + 7, and distinguish between points of local maxima and minima.
Solution:
Given f(x) = x3 – 3x2 – 9x + 7
Diff. both sides w.r.t. x, we have
f'(x) = 3x2 – 6x – 9
∴ f” (x) = 6x – 6
For critical points, we put f’ (x) = 0
⇒ 3 (x2 – 2x – 3) = 0
⇒ (x + 1) (x – 3) = 0
⇒ x = – 1, 3.

Case – I :
When x = – 1
∴ f”(- 1) = – 6 – 6 = – 12 < 0
∴ x = – 1 be a point of local maxima and local maximum value
= f (- 1) = – 1 – 3 + 9 + 7 = 12.

Case-II :
When x = 3
∴ f” (3) = 18 – 6 = 12 > 0
Thus, x = 3 be a point of local minima, and local minimum value = f(3)
= 27 – 27 – 27 + 7 = – 20.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

Question 3.
Find the points of local maxima and minima (if any) of each of the following functions. Find also the local maximum and minimum values :
(i) f{x) = x2 (NCERT)
(ii) f(x) = x3 – 3x (NCERT)
(iii) f(x) = x3 – 12x
(iv) f(x) = x3 – 6x2 + 9x + 15 (NCERT)
(v) f(x) = x3 – 3x + 3 (NCERT)
(vi) f(x) = 2x3 – 6x2 + 6x + 5 (NCERT)
(vii) f(x) = \(\frac{x}{2}+\frac{2}{x}\), x > 0 (NCERT)
(viii) f(x) = \(\frac{1}{x^2+2}\) (NCERT)
(ix) f(x) = 2 sin x – x,
(x) f(x) = sin x + cos x, 0 < x < \(\frac{\pi}{2}\) (NCERT)
(xi) f(x) = 3x4 + 4x3 – 12x2 + 12. (NCERT)
Solution:
(i) f (x) = x2
∴ f'(x) = 2x
For local max. or min. f'(x) = 0
⇒ 2x = 0
⇒ x = 0
Now f” (x) = 2
∴ f” (0) = 2 > 0
∴ x = 0 is a pt. of minima and Min. value = f( 0) = 0.

(ii) Given f(x) = x3 – 3x
∴ f (x) = 3x2 – 3
= 3 (x – 1) (x + 1)
For maxima/minima, f’ (x) = 0
⇒ 3 (x – 1) (x + 1) = 0
⇒ x = 1, – 1
∴ f”(x) = 6x
f”(1) = 6 > 0
∴ x = 1 be a point of minima and min. value of f(x)
= f(1) = 1 – 3 = – 2
and f”(- 1) = – 6 < 0 x = – 1 be a point maxima
and max. value of f(x) = f(- 1)
= – 1 + 3 = 2

Aliter :
Given f(x) = x3 – 3x
∴ f'(x) = 3x2 – 3 = 3(x2 – 1)
= 3 (x – 1) (x + 1)
For local ‘maxima/minima, f'(x) = 0
⇒ x2 – 1 = 0
⇒ x = ± 1

Case – I:
At x = 1 when x slightly < 1

Case – II:
At x = -1 when x slightly < -1 ⇒ \(\frac{d y}{d x}\) = (- ve) (+ ve) = (- ve) when x slightly > -1
∴ \(\frac{d y}{d x}\) = (+ ve) (+ ve) = (+ ve)
∴ f'(x) changes its sign from – ve to + ve
∴ x = 1 is a point of maxima and min. value = f (1) = 1 – 3 = – 2.

Case II:
At x = – 1
When x slightly < – 1 ∴ \(\frac{d y}{d x}\) = (- ve) (- ve) = (+ ve) when x slightly > – 1
∴ \(\frac{d y}{d x}\) = (- ve) (+ ve) = (- ve)
Thus \(\frac{d y}{d x}\) changes its sign from + ve to – ve
∴ x = – 1 is a point of maxima.
∴ max. value = f (- 1) = – 1 + 3 = 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

(iii) Given f(x) = x3 – 12x ;
f’ (x) = 3×2 – 12 ;
f” (x) = 6x
For local max/minima, f’ (x) = 0
⇒ 3x2 – 12 = 0
⇒ x = ± 2
Now, f” (2) = 12 > 0
∴ x = 2 is a pt. of minima
and min value = 8 – 24 = – 16
also, f” (- 2) = – 12 < 0
∴ x = – 2 is a pt. of maxima
and max. value = – 8 + 24 = 16.

(iv) Given f (x) = x3 – 6x2 + 9x + 15 ;
Diff. both sides w.r.t. x, we have
∴ f’ (x) = 3x2 – 12x + 9 ;
f” (x) = 6x – 12
For maxima/minima, f’ (x) = 0
⇒ 3 (x2 – 4x + 3) = 0
⇒ (x – 1) (x – 3) = 0
⇒ x = 1, 3

Case – I :
When x = 1,
f” (1) = 6 – 12 = – 6 < 0
∴ x = 1 be a point of maxima (local) and local maximum value
f(1) = 1 – 6 + 9 + 15 = 19

Case – II :
When x = 3 f” (3) = 18 – 12 = 6 > 0
∴ x = 3 be a point of local minima
and local min value = f(3)
= 27 – 54 + 27 + 15 = 15

(v) Given f(x) = x3 – 3x + 3
∴ f(x) = 3x2 – 3;
f”(x) = 6x
For local maxima / minima,
∴ f(x) = 0
⇒ 3 (x2 – 1) = 0
⇒ x = ± 1
Now f” (1) = 6 > 0
∴ x = 1 is a point, of minima
and min value = 1 – 3 + 3 = 1
and f” (- 1) = – 6 < 0
∴ x = – 1 is a point of maxima
and max. value = – 1 + 3 + 3 = 5.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

(vi) Given f(x) = 2x3 — 6x2 + 6x + 5
Diff, both sides w.r.t. x; we have
∴ f(x) = 6x2 – 12x + 6
∴ f”(x) = 12x – 12
For maxima/minima, we put f'(x) = 0
⇒ 6(x2 – 2x + 1) = 0
⇒ 6(x – 1)2
⇒ x = 1
Now, f” (1) = 12 – 12 = 0
Now, f”‘ (x) = 12
⇒ f”‘(1) = 12 ≠ 0
∴ x = 1 be a point of inflexion.
Thus, x = 1 be a point of neither maxima nor minima.

(vii) Given f(x) = \(\frac{x}{2}+\frac{2}{x}\)
∴ f'(x) = \(+\frac{1}{2}-\frac{2}{x^2}\)
= [/latex]\frac{x^2-4}{2 x^2}[/latex]
The critical points of f(x) are given by
∴ f(x) = 0
⇒ x2 – 4 = 0
⇒ x = ± 2
but x > 0
∴ x = – 2 is rejected.
Hence x = 2 be the only critical point.
∴ f”(x) = \(\frac{4}{x^3}\)
f”(2) = \(\frac{4}{8}=\frac{1}{2}\) > 0
Thus x = 2 is a point of minima and local min. value of f(x) at x = 2.
= f(2)
= \(\frac{2}{2}+\frac{2}{2}\) = 2.

(viii) Given f(x) = \(\frac{1}{x^2+2}\)
∴ f'(x) = – \(\frac{1}{\left(x^2+2\right)^2}\) × 2x
The critical points of f(x) are given by putting f'(x) = 0
i.e. \(\frac{2 x}{\left(x^2+2\right)^2}\) = 0
⇒ x = 0
[∵ (x2 + 2)2 > 0]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7 1

signs of f'(x) for different values of x
Clearly f'(x) changes its sign from negative to positive as x increases through 0.
Thus x = 0 is a point of local minima.
∴ local minimum value f(0) = \(\frac{1}{0+2}=\frac{1}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

(ix) Given f(x) = 2 sin x – x,
Diff both sides w.r.t. x, we have
∴ f(x) = 2 cos x – 1
For maxima/minima, we have f'(x) = 0
⇒ 2 cos x – 1 = 0
⇒ cos x = \(\frac{1}{2}\) = cos \(\frac{\pi}{3}\)
⇒ x = 2nπ ± \(\frac{\pi}{3}\) ∀ n ∈ Z
But – \(\frac{\pi}{2}\) < x < \(\frac{\pi}{2}\)
∴ x = ± \(\frac{\pi}{3}\)
∴ f”(x) = – 2 sin x
When x = \(\frac{\pi}{3}\);
f”(\(\frac{\pi}{3}\)) = – 2 sin \(\frac{\pi}{3}\)
= – 2 × \(\frac{\sqrt{3}}{2}\) = – √3 < 0
∴ x = \(\frac{\pi}{3}\) be a point of local maxima and local maximum value
= f(\(\frac{\pi}{3}\)) = 3 sin \(\frac{\pi}{3}\) – \(\frac{\pi}{3}\)
= √3 – \(\frac{\pi}{3}\)
When x = – \(\frac{\pi}{3}\); f”(- \(\frac{\pi}{3}\))
= – 2 sin (- \(\frac{\pi}{3}\))
= √3 > 0
∴ x = – \(\frac{\pi}{3}\) be a point of local minima.
and local minimum value = f(- \(\frac{\pi}{3}\))
= 2 sin (- \(\frac{\pi}{3}\)) + \(\frac{\pi}{3}\)
= – √3 + \(\frac{\pi}{3}\)

(x) Given f(x) = sin x + cos x, 0 < x < \(\frac{\pi}{2}\)
∴ f'(x) = cos x – sin x
For local maxima or minima, f’ (x) = 0
⇒ cos x – sin x = 0
⇒ tan x = 1 = tan \(\frac{\pi}{4}\)
∴ x = \(\frac{\pi}{4}\) ∈ (0, \(\frac{\pi}{2}\))
[∵ tan x = tan α
⇒ x = nπ + α, n ∈ I]
∴ f”(x) = – sin x – cos x
Now at x = \(\frac{\pi}{4}\),
f”(\(\frac{\pi}{4}\)) = \(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\)
= – √2 < 0
∴ x = \(\frac{\pi}{4}\) is a pt. of maxima
and Max. value = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\) = √2

(xi) Given f(x) = 3x4 + 4x3 – 12x2 + 12
∴ f’ (x) = 12x3 + 12x2 – 24x ;
f” (x) = 36x2 + 24x – 24
For local maxima/minima, f’ (x) = 0
⇒ 12x (x2 + x – 2) = 0
∴ x = 0, 1, – 2
at x = 0 ;
f” (x) = – 24 < 0
x = 0 is a point of local maxima and max. value = 12
at x = 1 ;
f” (1) = 36 + 24 – 24 = 36 > 0
∴ x = 1 is a pt. of local minima and min value
= 3 + 4 – 12 + 12 = 7
at x = – 2 ;
f”(- 2) = 144 – 48 – 24
= 72 > 0
∴ x = – 2 is a pt. of local minima and local minimum value
= 48 – 32 – 48 + 12 = – 20.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 7 Applications of Derivatives Ex 7.7

Question 4.
For what values of a and b, the function f(x) = x3 + ax2 + bx – 3 has local maximum value at x = 0 and local minimum value at x = 1 ?
Solution:
Given f(x) = x3 + ax2 + bx – 3
Diff. both sides w.r.t. x, we have
f ‘(x) = 3x2 + 2ax + b
Since the function f(x) has local maximum value at x = 0
and local minimum value at x = 1.
f’ (0) = 0 = f’ (1)
Now f’ (0) = 0
⇒ 0 + 2a × 0 + b = 0
⇒ b = 0
and f'(1) = 0
⇒ 3 + 2a + b = 0
⇒ 2a + 3 = 0
⇒ a = – \(\frac{3}{2}\)
Thus a = – \(\frac{3}{2}\) and b = 0.

Leave a Reply

Your email address will not be published. Required fields are marked *