Practicing ML Aggarwal Class 12 Solutions ISC Chapter 3 Matrices Ex 3.5 is the ultimate need for students who intend to score good marks in examinations.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5

Very short answer/objective questions (1 to 2):

Question 1.
Use elementary row operation
R1 → R1 – 2R2 in the following matrix equation :
\(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1
\end{array}\right]\), where A is a 3 × 3 matrix.
Solution:
Given \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1
\end{array}\right]\) A
operate R1 → R1 – 2R2
\(\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1
\end{array}\right]\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

Question 1 (old).
Use elemenatry column operation C2 → C2 + 2C1 in the following matrix equation:
\(\left[\begin{array}{ll}
2 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\)
Solution:
Given \(\left[\begin{array}{ll}
2 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\)
Operate C2 → C2 + 2C1
\(\left[\begin{array}{ll}
2 & 5 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & -1
\end{array}\right]\)

Question 2.
Use elementary column operation
C3 → C3 – 2C1 in the following matrix equation:
\(\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 3 \\
1 & 3 & 1
\end{array}\right]=A\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\), where A is a 3 × 3 matrix.
Solution:
Given \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 3 \\
1 & 3 & 1
\end{array}\right]=\mathrm{A}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\)
Operate C3 → C3 – 2C1
\(\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 1 & -1 \\
1 & 3 & -1
\end{array}\right]=\mathrm{A}\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

Question 3.
Find the inverse of the following (2 to 4) matrices, if they exist, by using elementary operations:
(i) \(\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]\) (NCERT)
(ii) \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\) (NCERT)
(iii) \(\left[\begin{array}{rr}
3 & 10 \\
2 & 7
\end{array}\right]\) (NCERT)
Solution:
(i) (By elementary row transformations)
We know that,
A = I2 A
∴ \(\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) A ;
R2 → R2 – 2 R1

\(\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\) A ;
R1 ↔ R2

\(\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{rr}
-2 & 1 \\
1 & 0
\end{array}\right]\) A ;
R2 → R2 – 2 R1

\(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
-2 & 1 \\
5 & -2
\end{array}\right]\) A ;
R1 → R1 – R2

\(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
-7 & 3 \\
5 & -2
\end{array}\right]\) A
Hence A-1 = \(\left[\begin{array}{rr}
-7 & 3 \\
5 & -2
\end{array}\right]\)
(By elementary column transformations)
we know that,
A = I2 A

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

(ii) Let A = \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\).
Then A = I2 A
⇒ \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Operate R2 → R2 – 2R1

⇒ \(\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\) A
Operate R1 → R1 – 3R2

⇒ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
7 & -3 \\
-2 & 1
\end{array}\right]\) A
⇒ I2 = BA
where B = \(\left[\begin{array}{rr}
7 & -3 \\
-2 & 1
\end{array}\right]\)
∴ A-1 = B
= \(\left[\begin{array}{rr}
7 & -3 \\
-2 & 1
\end{array}\right]\).

(iii) Let A = \(\)
We know that A = IA
⇒ \(\left[\begin{array}{rr}
3 & 10 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) A;
operate R1 → R1 – R2

⇒ \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\) A;
operate R2 → R2 – 2R1

⇒ \(\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-2 & 3
\end{array}\right]\) A;
operate R1 → R1 – 3R2

⇒ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
7 & -10 \\
-2 & 3
\end{array}\right]\) A;
Hence A-1 = \(\left[\begin{array}{rr}
7 & -10 \\
-2 & 3
\end{array}\right]\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

Question 4.
(i) \(\left[\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right]\)
(ii) \(\left[\begin{array}{rr}
3 & -1 \\
-4 & 2
\end{array}\right]\) (NCERT)
(iii) \(\left[\begin{array}{rr}
10 & -2 \\
-5 & 1
\end{array}\right]\)
Solution:
(i) By elementary row transformations
we know that,
A = I2 A
⇒ \(\left[\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) A ;
operate : R2 → R2 – 2R1

⇒ \(\left[\begin{array}{rr}
1 & -1 \\
0 & 5
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\) A ;
operate : R1 → R1 + \(\frac{1}{5}\)R2

⇒ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{rr}
3 / 5 & 1 / 5 \\
-2 & 1
\end{array}\right]\) ;
R2 → \(\frac{1}{5}\)R2

\(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
3 / 5 & 1 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right]\) A
Hence A-1 = \(\left[\begin{array}{rr}
3 / 5 & 1 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right]\)
= \(\frac{1}{5}\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right]\)

(ii) \(\left[\begin{array}{rr}
3 & -1 \\
-4 & 2
\end{array}\right]\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 2

∴ A-1 = \(\frac{1}{2}\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\) [by def. of inverse]

(iii) Let A = \(\left[\begin{array}{rr}
10 & -2 \\
-5 & 1
\end{array}\right]\)
Then A = I2A
⇒ \(\left[\begin{array}{rr}
10 & -2 \\
-5 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) A
Operate R1 ↔ R2

\(\left[\begin{array}{rr}
-5 & 1 \\
10 & -2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\) A
Operate R2 → R2 + 2R1

\(\left[\begin{array}{rr}
-5 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]\) A
Here all entries in the 2nd row of L.H.S. of the matrix eqn. are zeroes.
∴ A is not invertible.
i.e., A-1 does not exists.
[Note : Here |A| = \(\left|\begin{array}{rr}
10 & -2 \\
-5 & +1
\end{array}\right|\)
= + 10 – 10 = 0
∴ A is singular.
∴ A is not invertible.]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

Question 5.
(i) \(\left[\begin{array}{rrr}
3 & 0 & -1 \\
2 & 3 & 0 \\
0 & 4 & 1
\end{array}\right]\)
(ii) \(\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 5 & 7 \\
-2 & -4 & -5
\end{array}\right]\)
(iii) \(\left[\begin{array}{rrr}
2 & -1 & 4 \\
4 & 0 & 2 \\
3 & -2 & 7
\end{array}\right]\)
Solution:
(i) Let A = \(\left[\begin{array}{rrr}
3 & 0 & -1 \\
2 & 3 & 0 \\
0 & 4 & 1
\end{array}\right]\)
We know that A =IA

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 3

Hence A-1 = \(\left[\begin{array}{rrr}
3 & -4 & 3 \\
-2 & 3 & -2 \\
8 & -12 & 9
\end{array}\right]\).

(ii) We know that A = I3A

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 4

∴ A-1 = \(\left[\begin{array}{rrr}
3 & -2 & -1 \\
-4 & 1 & -1 \\
2 & 0 & 1
\end{array}\right]\) [by def. of inverse]

(iii) Let A = \(\left[\begin{array}{rrr}
2 & -1 & 4 \\
4 & 0 & 2 \\
3 & -2 & 7
\end{array}\right]\)
We know that A = IA

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 5

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 6

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

Question 6.
Using elementary row operations, find the inverse of the following matrix:
(i) A = \(\left[\begin{array}{rrr}
2 & -1 & 3 \\
-5 & 3 & 1 \\
-3 & 2 & 3
\end{array}\right]\)
(ii) \(\left[\begin{array}{rrr}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right]\)
Solution:
Given A = \(\left[\begin{array}{rrr}
2 & -1 & 3 \\
-5 & 3 & 1 \\
-3 & 2 & 3
\end{array}\right]\)
Then A = I3A
⇒ \(\left[\begin{array}{rrr}
2 & -1 & 3 \\
-5 & 3 & 1 \\
-3 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) A
operate R3 → R3 + R1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 7

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 8

⇒ I3 = BA
where B = \(\left[\begin{array}{rrr}
-7 & -9 & 10 \\
-12 & -15 & 17 \\
1 & 1 & -1
\end{array}\right]\)
∴ A-1 = B
= \(\left[\begin{array}{rrr}
-7 & -9 & 10 \\
-12 & -15 & 17 \\
1 & 1 & -1
\end{array}\right]\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 2 Matrices Ex 3.5

(ii) Let A = \(\left[\begin{array}{rrr}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right]\)
Since A = I2 A

ML Aggarwal Class 12 Maths Solutions Section A Chapter 3 Matrices Ex 3.5 9

⇒ I3 = BA
Thus by def. of inverse,
B = A-1
= \(\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\)

Leave a Reply

Your email address will not be published. Required fields are marked *