ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Well-structured ML Aggarwal Class 12 Solutions Chapter 6 Indeterminate Forms Ex 6.4 facilitate a deeper understanding of mathematical principles.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Typical Problems:

Question 1.
(i) Evaluate the following limits:
(i) \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) x tan-1 (\(\frac{2}{x}\))
(ii) \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) \(\frac{\sin ^{-1} \frac{1}{x}}{\tan \frac{1}{x}}\)
Solution:
(i) Put \(\frac{1}{x}\) = t
as x → ∞ ⇒ t → 0
∴ \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) x tan-1 (\(\frac{2}{x}\)) = \(\underset{t \rightarrow 0}{\mathrm{Lt}}\) \(\frac{\tan ^{-1}(2 t)}{t}\)
(\(\frac{0}{0}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{t \rightarrow 0} \frac{2}{1+4 t^2}\)
= \(\frac{2}{1+4 \times 0}\) = 2.

(ii) Put \(\frac{1}{x}\) = t
⇒ x = \(\frac{1}{t}\)
as x → ∞ ⇒ t → 0
∴ \(\ {Lt}_{x \rightarrow \infty} \frac{\sin ^{-1} \frac{1}{x}}{\tan \frac{1}{x}}=\underset{t \rightarrow 0}{\mathrm{Lt}} \frac{\sin ^{-1} t}{\tan t}\)
(\(\frac{0}{0}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{t \rightarrow 0} \frac{\frac{1}{\sqrt{1-t^2}}}{\sec ^2 t}\)
= \(\ {Lt}_{t \rightarrow 0} \frac{1}{\sec ^2 t \sqrt{1-t^2}}\)
= \(\frac{1}{(1)^2 \times \sqrt{1-0^2}}\) = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Question 2.
If \(\frac{\sin 2 x+k \sin x}{x^3}\) is finite, find k and the limit.
Solution:
\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\frac{\sin 2 x+k \sin x}{x^3}\)
(\(\frac{0}{0}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos 2 x+k \cos x}{3 x^2}\) …………(1)
Now deno 3x2 → 0 as x → 0 and limit is given to be finite.
So it is necessary that Numerator of eqn. (1)
i.e. 2 cos 2x + k cos x vanishes as x → 0
and this happens when 2 + k = 0
⇒ k = – 2
∴ From (1) ; we have
given limit = \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos 2 x-2 \cos x}{3 x^2}\) ((\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{-4 \sin 2 x+2 \sin x}{6 x}\) ((\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{-8 \cos 2 x+2 \cos x}{6}\)
= \(\frac{-8 \times 1+2 \times 1}{6}\) = – 1.

Question 3.
Find the values of a and b \(\ {Lt}_{x \rightarrow 0} \frac{x(1-a \cos x)+b \sin x}{x^3}\) exists and equals \(\frac{1}{3}\).
Solution:
\(\ {Lt}_{x \rightarrow 0} \frac{x(1-a \cos x)+b \sin x}{x^3}\)
(\(\frac{0}{0}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow 0} \frac{(1-a \cos x)+a x \sin x+b \cos x}{3 x^2}\) ………….(1)
Now the denominator of eqn. (1)
i.e. 3x2 → 0 as x → 0.
∴ the given limit exists finitely, it is necessary that Numerator of eqn. (1) is also goes to 0 as x → 0 and this happen when
1 – a × 1 + a × 0 + b = 0
⇒ 1 – a + b = 0
⇒ a – b = 1 ………..(2)
Let eqn. (2) happens, Then given limit
= \(\ {Lt}_{x \rightarrow 0} \frac{(1-a \cos x)+a x \sin x+b \cos x}{3 x^2}\left(\frac{0}{0}\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a \sin x+a \sin x+a x \cos x-b \sin x}{6 x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 a \sin x+a x \cos x-b \sin x}{6 x}\left(\frac{0}{0}\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 a \cos x+a \cos x-a x \sin x-b \cos x}{6}\)
= \(\frac{2 a+a-b}{6}\)
Also given limit = \(\frac{1}{3}\)
∴ \(\frac{2 a+a-b}{6}\) = \(\frac{1}{3}\)
⇒ 3a – b = 2 ………..(3)
On solving eqn. (2) and eqn. (3) ; we have
a = \(\frac{1}{2}\)
and b = – \(\frac{1}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Question 4.
Find the values of a, b and c so that \(\ {Lt}_{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x \sin x}\) = 2.
Solution:
\(\ {Lt}_{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x \sin x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x^2}\left(\frac{x}{\sin x}\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x^2}\) . 1 ……….(1)
[∵ \(\underset{\theta \rightarrow 0}{\ {Lt}} \frac{\theta}{\sin \theta}\) = 1]
Here denominator of eqn. (1) = x2 → 0 as x → 0.
Now the limit exists finitely if Numerator of eqn. (1)
i.e. aex – b cos x + c e-x as x → 0
and thos happen if a – b + c = 0 ……….(2)
suppose eqn.(2) is holds. Then given limit
= \(\ {Lt}_{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{a e^x+b \sin x-c e^{-x}}{2 x}\) ………..(3)
Now denominator of eqn. (3) i.e. 2x → 0 as x → 0
∴ in order that the limit exists finitely it is necessary that Numerator of eqn. (3) vanishes as x → 0.
This happens if a × 1 + b × 0 – c = 0
⇒ a – c = 0 ………..(4)
Now eqn. (4) holds.
Then given limit = \(\ {Lt}_{x \rightarrow 0} \frac{a e^x+b \sin x-c e^{-x}}{2 x}\left(\frac{0}{0}\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a e^x+b \cos x+c e^{-x}}{2}\)
= \(\frac{a+b+c}{2}\)
Also given limit = 2
∴ a + b + c = 4 ……..(5)
from (4) ;
a = c
∴ from (1) ;
2c – b = 0 …………..(6)
and from (5) ;
b + 2c = 4 …………..(7)
On solving eqn. (6) and (7) ; we have
c = 1; a = 1; b = 2.

Question 5.
Evaluate the following limits :
(i) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{\log _a x}{x^k}\), k > 0
(ii) \(\ {Lt}_{x \rightarrow \infty} 2^x \sin \frac{a}{2^x}\), a ≠ 0
Solution:
(i) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{\log _a x}{x^k}\), k > 0
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow \infty} \frac{\frac{1}{x} \frac{1}{\log a}}{k x^{k-1}}\)
= \(\ {Lt}_{x \rightarrow \infty} \frac{1}{(\log a) k x^k}\), k > 0 = 0

(ii) put \(\frac{a}{2^x}\) = t
as x → ∞
⇒ 2x → ∞
⇒ \(\frac{a}{2^x}\) → 0
⇒ t → 0 [a ≠ 0]
∴ \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) 2x sin \(\frac{a}{2^x}\)
= \(\underset{t \rightarrow 0}{\mathrm{Lt}}\) \(\frac{a}{t}\) sin t
= a \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) \(\frac{sin t}{t}\)
= a × 1 = a.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Question 6.
Evaluate the following limits:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}\)
(ii) \(\ {Lt}_{x \rightarrow a}\left(2-\frac{a}{x}\right)^{\tan \frac{\pi x}{2 a}}\).
Solution:
(i) Let F(x) = \(\ {Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}\)
⇒ log F(x) = \(\frac{1}{x}\) log \(\left(\frac{\tan x}{x}\right)\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4 1

(ii) Let F(x) = \(\left(2-\frac{a}{x}\right)^{\tan \frac{\pi x}{2 a}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Question 7.
Evaluate the following limits:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^2}\)
(ii) \(\ {Lt}_{x \rightarrow 0}(1+2 x)^{\frac{x+5}{x}}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4 4

∴ log (\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x)) = \(\frac{1}{3}\)
⇒ F(x) = e1/3

(ii) Let F(x) = \(\ {Lt}_{x \rightarrow 0}(1+2 x)^{\frac{x+5}{x}}\)
⇒ log F(x) = \(\left(\frac{x+5}{x}\right)\) log (1 + 2x)
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) log F(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\left(\frac{x+5}{x}\right)\) log (1 + 2x)
= \(\ {Lt}_{x \rightarrow 0} \frac{(x+5) \log (1+2 x)}{x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{(x+5) 2}{1+2 x}+\log (1+2 x)}{1}\)
= \(\frac{(0+5) 2}{1+0}\) + log (1 + 0) = 0
∴ log \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x) = 10
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\ {Lt}_{x \rightarrow 0}(1+2 x)^{\frac{x+5}{x}}\) = e10

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4

Question 8.
Evaluate : \(\ {Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{\sin x}{x-\sin x}}\)
Solution:
\(\ {Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{\sin x}{x-\sin x}}\) = \(\ {Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{\frac{\sin x}{x}}{1-\frac{\sin x}{x}}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.4 5

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Students can track their progress and improvement through regular use of Class 12 ISC Maths Solutions Chapter 6 Indeterminate Forms Ex 6.3.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Evaluate the following (1 to 6) limits:

Question 1.
(i) \(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) (x – α)x – α
(ii) \(\underset{x \rightarrow 1^{-}}{\mathbf{L t}}\) \(\left(1-x^2\right)^{\frac{1}{\log (1-x)}}\)
S0lution:
(i) Let F(x) = (x – α)x – α
⇒ log F(x) = (x – α) log (x – α)
∴ \(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) log (F(x)) = \(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) (x – α) log (x – α)
= \(\ {Lt}_{x \rightarrow \alpha} \frac{\log (x-\alpha)}{\frac{1}{x-\alpha}}\)
= \(\ {Lt}_{x \rightarrow \alpha} \frac{\frac{1}{x-\alpha}}{-\frac{1}{(x-\alpha)^2}}\)
= \(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) – (x – α) = 0
⇒ log (\(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) F(x)) = 0
⇒ \(\underset{x \rightarrow \alpha}{\mathbf{L t}}\) (x – α)x – α = e0 = 1

(ii) Let F(x) = \(\underset{x \rightarrow 1^{-}}{\mathbf{L t}}\) \(\left(1-x^2\right)^{\frac{1}{\log (1-x)}}\)
⇒ log F(x) = \(\frac{\log \left(1-x^2\right)}{\log (1-x)}\)
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) log (F(x)) = \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\log \left(1-x^2\right)}{\log (1-x)}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\frac{1}{1-x^2}(-2 x)}{\frac{1}{1-x}(-1)}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{2 x(1-x)}{1-x^2}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{2 x}{1+x}\)
∴ log (\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) F(x)) = 1
⇒ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) F(x) = e
⇒ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) \(\left(1-x^2\right)^{\frac{1}{\log (1-x)}}\) = e.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Question 2.
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) (tan x)sin 2x
(ii) \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) (tan x)sin 2x
Solution:
(i) Let F(x) = sin 2x log tan x
⇒ log F(x) = sin 2x log tan x
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) log (F(x)) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) sin 2x log tan x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\log \tan x}{\ {cosec} 2 x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{1}{\tan x} \sec ^2 x}{-\cot 2 x \ {cosec} 2 x \cdot 2}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{2}{\frac{\sin 2 x}{-2 \cot 2 x \{cosec} {2 x}}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\ {cosec} 2 x}{-\cot 2 x \ {cosec} 2 x}\)
= \(\ {Lt}_{x \rightarrow 0}\) (- tan 2x) = 0
⇒ log (\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x)) = 0
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x) = e0 = 1
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) (tan x)sin 2x = 1

(ii) Let F(x) = (tan x)sin 2x
⇒ log F(x) = sin 2x log tan x
∴ \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) F(x) = \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) sin 2x log tan x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{-}}{2}} \frac{\log \tan x}{\ {cosec} 2 x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{-}} \frac{\frac{\sec ^2 x}{\tan x}}{2 \cot 2 x \ {cosec} 2 x}\)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{-}}{-}} \frac{2 \ {cosec} 2 x}{-2 \cot 2 x \ {cosec} 2 x}\)
= – \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) tan 2x = 0
⇒ log (\(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) F(x)) = 0
⇒ \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) F(x) = e0 = 1
⇒ \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\text { Lt }}\) (tan x)sin 2x = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Question 3.
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \((\cot x)^{\frac{1}{\log x}}\)
(ii) \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) (1 + x)1/x
Solution:
Let F(x) = \((\cot x)^{\frac{1}{\log x}}\)
⇒ log f(x) = \(\frac{\log \cot x}{\log x}\)
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) log F(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \(\frac{\log \cot x}{\log x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{1}{\cot x}\left(-\ {cosec}^2 x\right)}{\frac{1}{x}}\) [using L ‘Hopital’s rule]
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{-x \tan x}{\sin ^2 x}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{-x}{\cos x \sin x}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{x}{\sin x} \cdot \underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{1}{\cos x}\)
∴ log (\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x)) = – 1. 1 = – 1
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x) = e-1
= \(\frac{1}{e}\)
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \((\cot x)^{\frac{1}{\log x}}\) = \(\frac{1}{e}\).

(ii) Let F(x) = (1 + x)1/x
⇒ log F(x) = \(\frac{1}{x}\) log (1 + x)
\(\underset{x \rightarrow \infty}{\mathbf{L t}}\) log F(x) = \(\ {Lt}_{x \rightarrow \infty} \frac{\log (1+x)}{x}\) (\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow \infty} \frac{\frac{1}{1+x}}{1}=\frac{1}{\infty}\) = 0
∴ log (\(\underset{x \rightarrow \infty}{\mathbf{L t}}\) F(x)) = 0
⇒ \(\underset{x \rightarrow \infty}{\mathbf{L t}}\) F(x) = e0 = 1
\(\underset{x \rightarrow \infty}{\mathbf{L t}}\) (1 + x)1/x = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Question 4.
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \(\left(\frac{1}{x}\right)^{\tan x}\)
(ii) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) (cot x)sin 2x
Solution:
(i) Let f(x) = \(\left(\frac{1}{x}\right)^{\tan x}\)
⇒ log F(x) = tan x log (\(\frac{1}{x}\))
= – tan x log x
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) log F(x) = – \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) tan x log x
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) – \(\frac{\log x}{\cot x} \quad\left(\frac{\infty}{\infty}\right)\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{-\frac{1}{x}}{-\ {cosec}^2 x}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\sin ^2 x}{x}\left(\frac{0}{0}\right)\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{2 \sin x \cos x}{1}\)
= 2 × 0 × 1 = 0
∴ log (\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) log F(x)) = 0
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x) = e0 = 1
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \(\left(\frac{1}{x}\right)^{\tan x}\) = 1

(ii) Let F(x) = (cot x)sin 2x
⇒ log F(x) = sin 2x log cot x
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) log F(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) sin 2x log cot x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\log \cot x}{\ {cosec} 2 x}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{1}{\cot x}\left(-\ {cosec}^2 x\right)}{-2 \ {cosec} 2 x \cot 2 x}\)
= \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{2 \ {cosec} 2 x}{2 \ {cosec} 2 x \cot 2 x}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) tan 2x = 0
∴ log (\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x)) = 0
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) F(x) = e0 = 1
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) (cot x)sin 2x = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Question 5.
(i) \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) (sec x)cot x
(ii) \(\begin{gathered}
\text { Lt } \\
x \rightarrow \frac{\pi}{4}
\end{gathered}\) (tan x)tan 2x
Solution:
(i) Let F(x) = (sec x)cot x
⇒ log F(x) = \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) cot x log sec x
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{-}} \frac{\log (\sec x)}{\tan x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{-}} \frac{\frac{1}{\sec x} \sec x \tan x}{\sec ^2 x}\)
= \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) cos x sin x
= 0 × 1 = 0
⇒ log (\(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) F(x)) = 0
⇒ \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) F(x) = e0 = 1
⇒ \(\underset{x \rightarrow \frac{\pi}{2}^{-}}{\text {Lt }}\) (sec x)cot x = 1

(ii) Let F(x) = (tan x)tan 2x
⇒ log F(x) = tan 2x log tan x
\(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) log F(x) = \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) tan 2x log tan x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{4}} \frac{\log \tan x}{\cot 2 x}\left(\frac{0}{0} \text { form }\right)\)
using L’Hopital’s rule, we have
= \(\ {Lt}_{x \rightarrow \frac{\pi}{4}} \frac{\frac{1}{\tan x} \sec ^2 x}{-2 \ {cosec}^2 2 x}\)
= \(\frac{\frac{1}{1} \cdot(\sqrt{2})^2}{-2(1)^2}\) = – 1
⇒ log (\(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) F(x)) = – 1
⇒ \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) F(x) = e-1 = \(\frac{1}{e}\)
∴ \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) (tan x)tan 2x = \(\frac{1}{e}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.3

Question 6.
(i) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (1 + x)1/x
(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (ex + 4x)1/x
Solution:
(i) Let F(x) = (1 + x)1/x
⇒ log F(x) = \(\frac{\log (1+x)}{x}\)
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) log F(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\frac{\log (1+x)}{x}\)
(\(\frac{0}{0}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{i \rightarrow 0} \frac{1}{\frac{1+x}{1}}\)
= \(\frac{1}{1+0}\) = 1
⇒ log (\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x)) = 1
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x) = e0 = 1
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (1 + x)1/x = 1.

(ii) Let F(x) = (ex + 4x)1/x
⇒ log F(x) = \(\frac{1}{x}\) log (ex + 4x)
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) log F(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\frac{\log \left(e^x+4 x\right)}{x}\) (\(\frac{0}{0}\) form)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\frac{\frac{1}{e^x+4 x}\left(e^x+4\right)}{1}\)
= \(\frac{e^0+4}{e^0+4 \times 0}\) = 5
⇒ log (\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x)) = 5
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) F(x) = e5
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (ex + 4x) = e5.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Parents can use ISC Maths Class 12 Solutions Chapter 6 Indeterminate Forms Ex 6.2 to provide additional support to their children.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Evaluate the following (1 to 14) limits:

Question 1.
(i) \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{\log \sin x}{\cot x}\)
(ii) \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\log \cos x}\)
Solution:
(i) \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{\log \sin x}{\cot x}\) (\(\frac{\infty}{\infty}\) form)
using L’Hopital’s rule
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{-\ {cosec}^2 x}\)
= – \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) cos x sin x
= – 1 × 0 = 0

(ii) \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\log \cos x}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{-}}{2}} \frac{\sec ^2 x}{-\tan x}\)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{-}}{2}}-\frac{1}{\cos ^2 x} \times \frac{\cos x}{\sin x}\)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{-}}{2}} \frac{-1}{\cos x \sin x}\) → – ∞

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 2.
(i) \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{+}} \frac{\log \left(x-\frac{\pi}{2}\right)}{\tan x}\)
(ii) \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\log (1-x)}{\cot \pi x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{+}} \frac{\log \left(x-\frac{\pi}{2}\right)}{\tan x}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow \frac{\pi^{+}}{2}} \frac{1}{\left(x-\frac{\pi}{2}\right) \sec ^2 x}\)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{+}} \frac{\cos ^2 x}{x-\frac{\pi}{2}}\left(\frac{0}{0}\right)\)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}^{+}} \frac{-2 \cos x \sin x}{1}\)
= – 2 × 0 × 1 = 0

(ii) \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\log (1-x)}{\cot \pi x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{-1}{(1-x) \pi\left(-\ {cosec}^2 \pi x\right)}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\sin ^2 \pi x}{1-x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{2 \pi \sin \pi x \cos \pi x}{-1}\)

Question 3.
(i) \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{\log \cot x}{e^{\ {cosec}^2 x}}\)
(ii) \(\underset{x \rightarrow 0^{+}}{\mathbf{L t}}\) logtan x tan 2x.
Solution:
(i) \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{\log \cot x}{e^{\ {cosec}^2 x}}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{1}{\cot x}\left(-\ {cosec}^2 x\right)}{-e^{\ {cosec}^2 x} 2 \ {cosec}^2 x \cot x}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{1}{2 \cot ^2 x e^{\ {cosec}^2 x}}\)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) \(\frac{1}{2}\) tan2 x e– cosec2 x
= \(\frac{1}{2}\) × 0 × 0 = 0
[∵ e– cosec2 x → e– ∞ = 0, ae, x → 0+]

(ii) \(\underset{x \rightarrow 0^{+}}{\mathbf{L t}}\) logtan x tan 2x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 4.
(i) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{\log x}{x}\)
(ii) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{5 x+2 \log x}{x+3 \log x}\)
Solution:
(i) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{\log x}{x}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow \infty} \frac{\frac{1}{x}}{1}\)
= \(\ {Lt}_{x \rightarrow \infty} \frac{1}{x}\) = 0.

(ii) \(\underset{x \rightarrow \infty}{\ {Lt}} \frac{5 x+2 \log x}{x+3 \log x}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow \infty} \frac{5+\frac{2}{x}}{1+\frac{3}{x}}\)
= \(\frac{5+0}{1+0}\)
= 5

Question 5.
(i) \(\ {Lt}_{x \rightarrow \infty} \frac{x^4+x^2}{e^x+1}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\cot x}{\cot 2 x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow \infty} \frac{x^4+x^2}{e^x+1}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 2

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\cot x}{\cot 2 x}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow 0} \frac{\tan 2 x}{\tan x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \sec ^2 2 x}{\sec ^2 x}\)
= \(\frac{2 \times 1^2}{1^2}\) = 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 6.
(i) \(\underset{x \rightarrow 1}{\mathrm{Lt}}\) cosec πx log x
(ii) \(\underset{x \rightarrow 1}{\mathrm{Lt}}\) (1 – x) tan \(\frac{\pi}{2}\) x
Solution:
(i) \(\underset{x \rightarrow 1}{\mathrm{Lt}}\) cosec πx log x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 1} \frac{\log x}{\sin \pi x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 1} \frac{\frac{1}{x}}{\pi \cos \pi x}\)
= \(\frac{1}{1 \times \pi \times \cos \pi}=\frac{1}{-\pi}\)

(ii) \(\underset{x \rightarrow 1}{\mathrm{Lt}}\) (1 – x) tan \(\frac{\pi}{2}\) x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 1} \frac{1-x}{\cot \frac{\pi x}{2}}\) [\(\frac{0}{0}\) form]
= \(\ {Lt}_{x \rightarrow 1} \frac{-1}{-\frac{\pi}{2} \ {cosec}^2 \frac{\pi x}{2}}\)
= \(\ {Lt}_{x \rightarrow 1} \frac{2}{\pi} \sin ^2 \frac{\pi x}{2}\)
= \(\frac{2}{\pi} \sin ^2 \frac{\pi}{2}\)
= \(\frac{2}{\pi}(1)^2\)
= \(\frac{2}{\pi}\).

Question 7.
(i) \(\ {Lt}_{x \rightarrow 1}\left(\frac{1}{x^2-1}-\frac{2}{x^4-1}\right)\)
(ii) \(\ {Lt}_{x \rightarrow 1}\left(\frac{1}{\log x}-\frac{1}{x-1}\right)\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 1}\left(\frac{1}{x^2-1}-\frac{2}{x^4-1}\right)\) (∞ – ∞ form)
= \(\ {Lt}_{x \rightarrow 1}\left[\frac{x^2+1-2}{x^4-1}\right]\)
= \(\ {Lt}_{x \rightarrow 1} \frac{x^2-1}{x^4-1}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 1} \frac{2 x}{4 x^3}\)
= \(\frac{2}{4}=\frac{1}{2}\)

(ii) \(\ {Lt}_{x \rightarrow 1}\left(\frac{1}{\log x}-\frac{1}{x-1}\right)\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 8.
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^2} \log (1+x)\right)\)
(ii) \(\ {Lt}_{x \rightarrow 2}\left(\frac{1}{\log (x-1)}-\frac{1}{x-2}\right)\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^2} \log (1+x)\right)\) (∞ – ∞ form)
= \(\ {Lt}_{x \rightarrow 0}\left[\frac{x-\log (1+x)}{x^2}\right]\) (\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule)
= \(\ {Lt}_{x \rightarrow 0} \frac{1-\frac{1}{1+x}}{2 x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{1+x-1}{2 x(1+x)}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{1}{(1+x)^2}\)
= \(\frac{1}{2(1+0)}=\frac{1}{2}\)

(ii) \(\ {Lt}_{x \rightarrow 2}\left(\frac{1}{\log (x-1)}-\frac{1}{x-2}\right)\) (∞ – ∞ form)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 4

Question 9.
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^x-1}\right)\)
(ii) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{2 x}-\frac{1}{x\left(e^{\pi x}+1\right)}\right)\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^x-1}\right)\) (∞ – ∞ form)

 

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 9

(ii) \(\ {Lt}_{x \rightarrow 0}\left(\frac{1}{2 x}-\frac{1}{x\left(e^{\pi x}+1\right)}\right)\) (∞ – ∞ form)
= \(\ {Lt}_{x \rightarrow 0}\left[\frac{e^{\pi x}+1-2}{2 x\left(e^{\pi x}+1\right)}\right]\)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^{\pi x}-1}{2 x\left(e^{\pi x}+1\right)}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^{\pi x}-1}{2 x} \cdot \frac{1}{1+1}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^{\pi x}-1}{4 x}\) (\(\frac{0}{0}\) form)
using L’Hopital’s rule, we have
= \(\ {Lt}_{x \rightarrow 0} \frac{e^{\pi x} \cdot \pi}{4}=\frac{\pi}{4}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 10.
(i) \(\underset{x \rightarrow 0}{\ {Lt}}\left(\cot x-\frac{1}{x}\right)\)
(ii) \(\underset{x \rightarrow 0}{\ {Lt}}\left(\cot ^2 x-\frac{1}{x^2}\right)\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)\) (∞ – ∞ form)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 5

 

(ii) \(\underset{x \rightarrow 0}{\ {Lt}}\left(\cot ^2 x-\frac{1}{x^2}\right)\)

 

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 6

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 11.
(i) \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) (sec x – tan x)
(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (cosec x – cot x)
Solution:
(i) \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) (sec x – tan x) (∞ – ∞ form)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}}\left[\frac{1-\sin x}{\cos x}\right]\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-\sin x}\)
= \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) cot x = 0.

(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) (cosec x – cot x)
= \(\ {Lt}_{x \rightarrow 0} \frac{1-\cos x}{\sin x}\) (\(\frac{0}{0}\) form)
using ‘L’ Hopitals’s rule
= \(\ {Lt}_{x \rightarrow 0} \frac{\sin x}{\cos x}\)
= \(\frac{0}{1}\) = 0.

Question 12.
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x log x
(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) sin x log x2.
Solution:
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x log x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\log x}{\frac{1}{x}}\)
(\(\frac{\infty}{\infty}\) form, using L’Hopital’s rule)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^2}}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) (- x) = 0.

(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) sin x log x2
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) 2 sin x log x (0 . ∞ form)
[∵ log ab = b log a]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 7

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

 

Question 13.
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x log (tan x)
(ii) \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) (1 – sin x) tan x
Solution:
(i) \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x log (tan x) (0 . ∞ form)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2 8

(ii) \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) (1 – sin x) tan x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cot x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-\ {cosec}^2 x}\)
= \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{2}}\) cos x sin2 x
= 0 × 12 = 0.

Question 14.
(i) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x tan (\(\frac{\pi}{2}\) – x)
(ii) \(\underset{x \rightarrow c}{\mathrm{Lt}}\) (c – x) tan \(\frac{\pi x}{2 c}\)
Solution:
(i) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x tan (\(\frac{\pi}{2}\) – x)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x cot x (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow 0} \frac{x}{\tan x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{1}{\sec ^2 x}\)
= \(\frac{1}{1^2}\) = 1.

(ii) \(\underset{x \rightarrow c}{\mathrm{Lt}}\) (c – x) tan \(\frac{\pi x}{2 c}\) (0 . ∞ form)
= \(\ {Lt}_{x \rightarrow c} \frac{c-x}{\cot \frac{\pi x}{2 c}}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow c} \frac{-1}{-\ {cosec}^2 \frac{\pi x}{2 c} \cdot \frac{\pi}{2 c}}\)
= \(\frac{2 c}{\pi} \ {Lt}_{x \rightarrow c} \sin ^2 \frac{\pi x}{2 c}\)
= \(\frac{2 c}{\pi} \times 1^2\)
= \(\frac{2 c}{\pi}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.2

Question 15.
Show that \(\ {Lt}_{x \rightarrow \infty} \frac{e^x-e^{-x}}{e^x+e^{-x}}\) = 1 and \(\ {Lt}_{x \rightarrow-\infty} \frac{e^x-e^{-x}}{e^x+e^{-x}}\) = – 1.
Solution:
\(\ {Lt}_{x \rightarrow \infty} \frac{e^x-e^{-x}}{e^x+e^{-x}}\) (\(\frac{\infty}{\infty}\) form)
= \(\ {Lt}_{x \rightarrow \infty} \frac{e^x\left(1-e^{-2 x}\right)}{e^x\left(1+e^{-2 x}\right)}\)
= \(\ {Lt}_{x \rightarrow \infty} \frac{1-e^{-2 x}}{1+e^{-2 x}}\)
= \(\frac{1-0}{1+0}\) = 1
[as x → ∞, e-2x → e– ∞ = \(\frac{1}{e^{\infty}}\) = 0]
and \(\ {Lt}_{x \rightarrow-\infty} \frac{e^x-e^{-x}}{e^x+e^{-x}}\)
= \(\ {Lt}_{x \rightarrow-\infty} \frac{e^{2 x}-1}{e^{2 x}+1}\)
= \(\frac{0-1}{0+1}\)
= 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

The availability of ISC Mathematics Class 12 Solutions Chapter 6 Indeterminate Forms Ex 6.1 encourages students to tackle difficult exercises.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Evaluate the following (1 to 13) limits:

Question 1.
(i) \(\ {Lt}_{x \rightarrow 3} \frac{x^4-81}{x-3}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{(1+x)^n-1}{x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 3} \frac{x^4-81}{x-3}\)
= \(\ {Lt}_{x \rightarrow 3} \frac{4 x^3-0}{1}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= 4 × 33
= 108

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{(1+x)^n-1}{x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{n(1+x)^{n-1}}{n}\)
= n (1 + 0)n-1
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= n × 1n-1 = n.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 2.
(i) \(\underset{x \rightarrow 0}{\ {Lt}} \frac{\sin a x}{\sin b x}\)
(ii) \(\ {Lt}_{x \rightarrow 2} \frac{e^x-e^2}{x-2}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\sin a x}{\sin b x}=\ {Lt}_{x \rightarrow 0} \frac{a \cos a x}{b \cos b x}\)
= \(\frac{a \times 1}{b \times 1}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\frac{a}{b}\)

(ii) \(\ {Lt}_{x \rightarrow 2} \frac{e^x-e^2}{x-2}\) = \(\ {Lt}_{x \rightarrow 2} \frac{e^x-0}{1-0}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= e2

Question 3.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x e^x}{1-e^x}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-1}{\tan 2 x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x e^x}{1-e^x}=\ {Lt}_{x \rightarrow 0} \frac{x e^x+e^x}{-e^x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x(x+1)}{-e^x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) – (x + 1)
= – (0 + 1)
= – 1.

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-1}{\tan 2 x}=\ {Lt}_{x \rightarrow 0} \frac{e^x}{2 \sec ^2 2 x}\)
= \(\frac{e^0}{2 \sec ^2 0}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\frac{1}{2 \times 1}=\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 4.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-(1+x)}{x^2}\)
(ii) \(\ {Lt}_{x \rightarrow 1} \frac{x^2-x \log x+\log x-1}{x-1}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-(1+x)}{x^2}\) = \(\ {Lt}_{x \rightarrow 0} \frac{e^x-1}{2 x}\) (\(\frac{0}{0}\) form)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x}{2}\)
= \(\frac{e^0}{2}=\frac{1}{2}\)

(ii) \(\ {Lt}_{x \rightarrow 1} \frac{x^2-x \log x+\log x-1}{x-1}\) = \(\ {Lt}_{x \rightarrow 1} \frac{2 x-\left(x \times \frac{1}{x}+\log x \cdot 1\right)+\frac{1}{x}}{1}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\underset{x \rightarrow 1}{\mathrm{Lt}}\) 2x – (1 + log x) + \(\frac{1}{x}\)
= 2 × 1 – (1 + log 1) + 1
= 2 – 1 – 0 + 1
= 2

Question 5.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\cos x-1}{\cos 2 x-1}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{8^x-2^x}{4 x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\cos x-1}{\cos 2 x-1}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{-\sin x}{-2 \sin 2 x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{\sin x}{2 \sin 2 x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{\cos x}{4 \cos 2 x}\)
= \(\frac{1}{4 \times 1}=\frac{1}{4}\)

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{8^x-2^x}{4 x}\)
Solution:
\(\ {Lt}_{x \rightarrow 0} \frac{8^x-2^x}{4 x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{8^x \log 8-2^x \log 2}{4}\)
= \(\frac{8^0 \log 8-2^0 \log 2}{4}\)
[∵ log ab = b log a]
= \(\frac{\log 8-\log 2}{4}\)
= \(\frac{1}{4}\) log 4
= \(\frac{1}{4}\) × 2 log 2
= \(\frac{1}{2}\) log 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 6.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\tan x}{x-\sin x}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{2 \tan ^{-1} x-x}{2 x-\sin ^{-1} x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\tan x}{x-\sin x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{1-\sec ^2 x}{1-\cos x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{-2 \sec ^2 x \tan x}{\sin x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{-2 \sec ^2 x \sin x}{\sin x \cos x}\)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) – 2 sec3 x
= – 2 × 1 = – 2

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{2 \tan ^{-1} x-x}{2 x-\sin ^{-1} x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{2}{1+x^2}-1}{2-\frac{1}{\sqrt{1-x^2}}}\)
= \(\frac{2-1}{2-1}\)
= 1.

Question 7.
(i) \(\underset{x \rightarrow 0}{\ {Lt}} \frac{\log \sec 2 x}{\log \sec x}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\cos 2 x-\cos x}{\sin ^2 x}\)
Solution:
(i) \(\underset{x \rightarrow 0}{\ {Lt}} \frac{\log \sec 2 x}{\log \sec x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{1}{\sec 2 x} \sec 2 x \tan 2 x \cdot 2}{\frac{1}{\sec x} \sec x \tan x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \tan 2 x}{\tan x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{4 \sec ^2 2 x}{\sec ^2 x}\)
= \(\frac{4 \times 1}{1}\) = 4.

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\cos 2 x-\cos x}{\sin ^2 x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1 1

Question 8.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\sin x}{x^3}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-e^{-x}-2 \log (1+x)}{x \sin x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\sin x}{x^3}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{1-\cos x}{3 x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{\sin x}{6 x}\)
= \(\frac{1}{6} \ {Lt}_{x \rightarrow 0} \frac{\sin x}{x}\)
= \(\frac{1}{6} \times 1=\frac{1}{6}\)

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-e^{-x}-2 \log (1+x)}{x \sin x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 9.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{e^x+e^{-x}+2 \cos x-4}{x^3}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{x^2+2 \cos x-2}{x \sin ^3 x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{e^x+e^{-x}+2 \cos x-4}{x^3}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x-e^{-x}-2 \sin x}{3 x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x+e^{-x}-2 \cos x}{6 x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x-o^{-x}+2 \sin x}{6}\)
= \(\frac{1-1+2 \times 0}{6}\)
= 0

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{x^2+2 \cos x-2}{x \sin ^3 x}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1 3

Question 10.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\log (1-x)}{\tan \frac{\pi}{2} x}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^2}{\log \left(1+x^2\right)}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\log (1-x)}{\tan \frac{\pi}{2} x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{-1}{1-x}}{\frac{\pi}{2} \sec ^2 \frac{\pi}{2} x}\)
= \(\frac{\frac{-1}{1-0}}{\frac{\pi}{2} \times 1^2}\)
= – \(\frac{2}{\pi}\)

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^2}{\log \left(1+x^2\right)}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \tan ^{-1} x \cdot \frac{1}{1+x^2}}{\frac{2 x}{1+x^2}}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{\tan ^{-1} x}{x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{1}{1+x^2}}{1}\)
= \(\frac{1}{1+0^2}\) = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 11.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\sin x \cos x}{x^3}\) (ISC 2013)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-e^{\sin x}}{x-\sin x}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{x-\sin x \cos x}{x^3}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{x-\frac{1}{2} \sin 2 x}{x^3}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{1-\frac{1}{2} \cos 2 x \times 2}{3 x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \sin 2 x}{6 x}\)
= \(\frac{2}{3} \ {Lt}_{x \rightarrow 0} \frac{\sin 2 x}{2 x}\)
= \(\frac{2}{3} \times 1=\frac{2}{3}\)
[∵ \(\ {Lt}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}\) = 1]

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x-e^{\sin x}}{x-\sin x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1 4

Question 12.
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\log \left(1-x^2\right)}{\log \cos x}\)
(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x \sin x-x-x^2}{x^3}\)
Solution:
(i) \(\ {Lt}_{x \rightarrow 0} \frac{\log \left(1-x^2\right)}{\log \cos x}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{\frac{-2 x}{1-x^2}}{-\frac{\sin x}{\cos x}}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 x}{\left(1-x^2\right) \tan x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2}{1-x^2} \cdot \underset{x \rightarrow 0}{\ {Lt}} \frac{x}{\tan x}\)
= \(\frac{2}{1-0}\) . 1 = 2
[∵ \(\ {Lt}_{\theta \rightarrow 0} \frac{\theta}{\tan \theta}\) = 1]

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{e^x \sin x-x-x^2}{x^3}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x \cos x+\sin x e^x-1-2 x}{3 x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{e^x(-\sin x)+\cos x e^x+e^x \cos x+\sin x e^x-2}{6 x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos x e^x-2}{6 x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos x e^x-2 \sin x e^x}{6}\)
= \(\frac{2 \times 1 \times 1-2 \times 0 \times 1}{6}=\frac{1}{3}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 13.
(i) \(\ {Lt}_{x \rightarrow 0^{+}} \frac{3^x-2^x}{\sqrt{x}}\)
(ii) \(\ {Lt}_{x \rightarrow 0^{+}} \frac{(1+x)^n-n x-1}{x^2}\), n > 1
Solution:
(i) \(\ {Lt}_{x \rightarrow 0^{+}} \frac{3^x-2^x}{\sqrt{x}}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{3^x \log 3-2^x \log 2}{\frac{1}{2 \sqrt{x}}}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) 2√x [3x log 3 – 2x log 2]
= 2 × 0 [1 × log 3 – 1 × log 2] = 0

(ii) \(\ {Lt}_{x \rightarrow 0} \frac{(1+x)^n-n x-1}{x^2}\) ; n > 1
[Using L Hopital’s rule and (\(\frac{0}{0}\) form)]
= \(\ {Lt}_{x \rightarrow 0} \frac{n(1+x)^{n-1}-n}{2 x}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{n(n-1)(1+x)^{n-2}-0}{2}\)
= \(\frac{n(n-1)}{2}\)

Question 14.
What is the fallacy in the following use of L’Hop[ital’s rule ?
\(\ {Lt}_{x \rightarrow 2} \frac{x^3-x^2-x-2}{x^3-3 x^2+3 x-2}\) = \(\ {Lt}_{x \rightarrow 2} \frac{3 x^2-2 x-1}{3 x^2-6 x+3}\) = \(\ {Lt}_{x \rightarrow 2} \frac{6 x-2}{6 x-6}=\ {Lt}_{x \rightarrow 2} \frac{6}{6}\) = 1
Solution:
\(\ {Lt}_{x \rightarrow 2} \frac{x^3-x^2-x-2}{x^3-3 x^2+3 x-2}\)
[\(\frac{0}{0}\) form, using ‘L’ Hopitals’s rule]
= \(\ {Lt}_{x \rightarrow 2} \frac{3 x^2-2 x-1}{3 x^2-6 x+3}\)
which is not (\(\frac{0}{0}\)) form so we can’t apply L’Hopital’s rule in this step.

Question 15.
If \(\underset{x \rightarrow 0}{\ {Lt}} \frac{\sin 2 x+k \sin x}{x^3}\) is finite, find k and the limit.
Solution:
\(\ {Lt}_{x \rightarrow 0} \frac{\sin 2 x+k \sin x}{x^3}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos 2 x+k \cos x}{3 x^2}\) ……….(1)
(using L’Hopital’s rule)
Since denominator of eqn. (1)
i.e. 3x2 → 0 as x → 0 so in order that given limit exist finitely.
Numerator of eqn. (1)
i.e. 2 cos 2x + k cos x → 0
as x → 0 and this happen.
When 2 × 1 + k × 1 = 0
⇒ k = – 2
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \cos 2 x-2 \cos x}{3 x^2}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{-4 \sin 2 x+2 \sin x}{6 x}\) (\(\frac{0}{0}\))
= \(\ {Lt}_{x \rightarrow 0} \frac{-8 \cos 2 x+2 \cos x}{6}\)
= \(\frac{-8 \times 1+2 \times 1}{6}\)
= \(\frac{-6}{6}\) = – 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 6 Indeterminate Forms Ex 6.1

Question 16.
Find the values of a and b \(\ {Lt}_{x \rightarrow 0} \frac{x(1-a \cos x)+b \sin x}{x^3}\) exists and equals \(\frac{1}{3}\).
Solution:
\(\ {Lt}_{x \rightarrow 0} \frac{x(1-a \cos x)+b \sin x}{x^3}\) (\(\frac{0}{0}\) form)
= \(\ {Lt}_{x \rightarrow 0} \frac{(1-a \cos x)+a x \sin x+b \cos x}{3 x^2}\) …………….(1)
Since denominator of eqn. (1) i.e. 3x2 → 0 as x → 0
so in order that given limit ecxists finitely, the numerator of eqn. (1)
i.e. (1 – a cos x) + ax sin x + b cos x → 0
as x → 0 and this happen
When 1 – a + b =0
Now eqn. (2) is satisfied.
When given limit
= \(\ {Lt}_{x \rightarrow 0} \frac{(1-a \cos x)+a x \sin x+b \cos x}{3 x^2}\left(\frac{0}{0} \text { form }\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a \sin x+a \sin x+a x \cos x-b \sin x}{6 x}\left(\frac{0}{0} \text { form }\right)\)
= \(\ {Lt}_{x \rightarrow 0} \frac{a \cos x+a \cos x+a \cos x-a x \sin x-b \cos x}{6}\)
= \(\frac{a+a+a-b}{6}\)
= \(\frac{3 a-b}{6}=\frac{1}{3}\) (given)
⇒ 3a – b = 2
On solving (2) and (3) ; we have
1 + 2a = 2
⇒ a = \(\frac{1}{2}\)
and b = – \(\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Regular engagement with Understanding ISC Mathematics Class 12 Solutions Chapter 5 Continuity and Differentiability MCQs can boost students’ confidence in the subject.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Choose the correct answer from the given four options in questions (1 to 55) :

Question 1.
The number of points of discontinuity of the rational function f(x) = \(\frac{x^2-3 x+2}{4 x-x^3}\) is
(a) 1
(b) 2
(c) 3
(d) none
Solution:
(c) 3

Given f(x) = \(\frac{x^2-3 x+2}{4 x-x^3}\)
Clearly f(x) is discontinuous
when 4x – x3 = 0
⇒ x (4 – x2) = 0
⇒ x = 0, ± 2
Thus required no. of points of discontinuity of f(x) be three.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 2.
The number of points of discontinuity of the function f(x) = |x – 1| + |x – 2| + sin x, x ∈ [0, 4], is
(a) 1
(b) 2
(c) 3
(d) 0
Solution:
(d) 0

Given f(x) = |x – 1| + |x – 2| + sin x
When x < 1
∴ |x – 1| = – (x – 1) ;
When 1 ≤ x < 2
∴ |x – 1| = x – 1 ;
When x ≥ 2
∴ |x – 1| = x – 1 ;
|x – 2| = x – 2
∴ f(x) = \(\left\{\begin{array}{ccc}
-(x-1)-(x-2)+\sin x & ; & x<1 \\
x-1-(x-2)+\sin x & ; & 1 \leq x<2 \\
x-1+x-2+\sin x & ; & x \geq 2
\end{array}\right.\)
= \(\left\{\begin{array}{clc}
-2 x+3+\sin x & ; & x<1 \\
1+\sin x & ; & 1 \leq x<2 \\
2 x-3+\sin x & ; & x \geq 2
\end{array}\right.\)

at x = 1
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) – 2x + 3 + sin x
= 1 + sin 1
\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 1 + sin x
= 1 + sin 1
∴ f(x) is continous at x = 1.

at x = 2:
\(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) 1 + sin x
= 1 + sin 2
\(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) (2x – 3) + sin x
= 1 + sin 2
∴ f(x) is continous at x = 2.

Since every polynomial function and trigonometric function is continuous in its domain.
Thus given function is everywhere continuous.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 3.
The functionf(x) = cot x is discontinuous on the set
(a) {x = nπ, n ∈ N}
(b) {x = 2nπ, n ∈ Z}
(c) {x = \(\frac{n \pi}{2}\), n ∈ Z}
(d) {x = (2n + 1) \(\frac{\pi}{2}\), n ∈ Z}
Solution:
(d) {x = (2n + 1) \(\frac{\pi}{2}\), n ∈ Z}

Given f(x) = cot x
= \(\frac{\cos x}{\sin x}\)
f(x) is not defined when sin x = 0
⇒ x = nπ ∀ n ∈ Z
Thus, f(x) is discontinuous on set {x = nπ, n ∈ N}.

Question 4.
The domain of continuity of the function f(x) = tan x is
(a) R – {nπ, n ∈ Z}
(b) R – {2nπ, n ∈ Z}
(c) R – {(2n + 1)\(\frac{\pi}{2}\), n ∈ Z}
(d) R – {\(\frac{n \pi}{2}\), n ∈ Z}
Solution:
(c) R – {(2n + 1)\(\frac{\pi}{2}\), n ∈ Z}

Given f(x) = tan x
= \(\frac{\sin x}{\cos x}\)
Now f(x) is not defined when cos x = 0
⇒ x = (2n + 1) \(\frac{\pi}{2}\), n ∈ Z
So f(x) is discontinuous at x = (2n + 1) \(\frac{\pi}{2}\), n ∈ Z
Hence domain of continuity of function f(x) be R – {(2n + 1) \(\frac{\pi}{2}\), n ∈ Z}.

Question 5.
The functionf(x) = [x], where [x] denotes the greatest integer function, is continuous at
(a) – 2
(b) 1
(c) 4
(d) 1.5
Solution:
We know that,
\(\underset{x \rightarrow a^{-}}{\mathrm{Lt}}\) [x] = a – 1
\(\underset{x \rightarrow a^{+}}{\mathrm{Lt}}\) [x] = a, where a ∈ I
Thus, f(x) is discontinuous for all integral points
and \(\underset{x \rightarrow a}{\mathrm{Lt}}\) = [a]
Thus f(x) is continuous for all non-integral points.
Clearly f(x) is continuous at x = 1.5 = \(\frac{3}{2}\) ∉ I.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 6.
The function f(x) = \(\left\{\begin{array}{cc}
x-1, & x<2 \\
2 x-3, & x \geq 2
\end{array}\right.\) is continous function
(a) at x = 2 only
(b) for all real values of x
(c) for all real values of x except 2
(d) for all integral values of X only
Solution:
When x < 2 ; f (x) = x – 1 which is a polynomial function and hence continuous everywhere. When x > 2 ;
f (x) = 2x – 3, which is a polynomial function and hence continuous everywhere.
at x = 2
\(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) x – 1
= 2 – 1 = 1
\(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) 2x – 3
= 4 – 3 = 1
and f(2) = 1
∴ f(x) is continuous at x = 2
Thusf(x) is continuous for all real values of x.

Question 7.
If f(x) = \(\left\{\begin{array}{cc}
5 x-4, & 0 4 x^2+3 a x, & 1<x<2
\end{array}\right.\) is continuous for all x ∈ (0, 2), then the value of a is
(a) 1
(b) 0
(c) – 1
(d) \(\frac{1}{3}\)
Solution:
(c) – 1

Since function f(x) is continuous for all x ∈ (0, 2)
∴ f(x) is continuous at x = 1
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) 5x – 4
= 5 – 4 = 1
and \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) (4x2 + 3ax)
= 4 + 3a
⇒ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x)
⇒ 1 = 4 + 3a
⇒ – 3 = 3a
⇒ a = – 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 8.
If f(x) = \(\left\{\begin{array}{cc}
\frac{\sqrt{4+x}-2}{x}, & x \neq 0 \\
k, & x=0
\end{array}\right.\) is continous at x = 0, then the value of k is
(a) 1
(b) 4
(c) \(\frac{1}{4}\)
(d) 0
Solution:
(c) \(\frac{1}{4}\)

\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = \(\ {Lt}_{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x} \times \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{4+x-4}{x[\sqrt{4+x}+2]}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{1}{\sqrt{4+x}+2}\)
= \(\frac{1}{2+2}=\frac{1}{4}\)
and f(0) = k
Since f(x) is continuous at x = 0
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\)

Question 9.
If f(x) = \(\left\{\begin{array}{cc}
\frac{\sqrt{x^2+5}-3}{x+2}, & x \neq-2 \\
k, & x=-2
\end{array}\right.\) is continuous at x = – 2, then the value of k is
(a) – \(\frac{2}{3}\)
(b) 0
(c) \(\frac{2}{3}\)
(d) none of these
Solution:
(a) – \(\frac{2}{3}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 1

Question 10.
If f(x) = \(\left\{\begin{array}{cc}
\frac{\sin \pi x}{5 x}, & x \neq 0 \\
k, & x=0
\end{array}\right.\) is continuous at x = 0, then k is equal to
(a) \(\frac{\pi}{5}\)
(b) \(\frac{5}{\pi}\)
(c) 1
(d) 0
Solution:
(b) \(\frac{5}{\pi}\)

\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = \(\ {Lt}_{x \rightarrow 0} \frac{\sin \pi x}{5 x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{\sin \pi x}{\pi x} \times \frac{\pi}{5}\)
= \(\frac{\pi}{5} \times 1=\frac{\pi}{5}\)
[∵ \(\underset{\theta \rightarrow 0}{\ {Lt}} \frac{\sin \theta}{\theta}\) = 1]
Since f(x) is continuous at x = 0
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = f(0)
⇒ \(\frac{\pi}{5}\) = k.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 11.
The value of function f at x = 0, so that the function f(x) = \(\frac{2^x-2^{-x}}{x}\), x ≠ 0 is continuous at x = 0, is
(a) 0
(b) log 2
(c) log 4
(d) 24
Solution:
(c) log 4

\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = \(\ {Lt}_{x \rightarrow 0} \frac{2^x-2^{-x}}{x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2^x-1-\left(2^{-x}-1\right)}{x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2^x-1}{x}+\underset{x \rightarrow 0}{\ {Lt}} \frac{2^{-x}-1}{-x}\)
= log 2 + log 2
= 2 lo0g 2
= log 22
= log 4
Since f(x) is continuous at x = 0
∴ f(0) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = log 4.

Question 12.
If f(x) = \(\frac{2 x+\sin ^{-1} x}{2 x-\tan ^{-1} x}\) is continuous for all x in (- 1, 1), then the value of f(0) is
(a) 2
(b) 3
(c) – 3
(d) \(\frac{3}{2}\)
Solution:
(b) 3

\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = \(\ {Lt}_{x \rightarrow 0} \frac{2 x+\sin ^{-1} x}{2 x-\tan ^{-1} x}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2+\frac{\sin ^{-1} x}{x}}{2-\frac{\tan ^{-1} x}{x}}\)
= \(\frac{2+1}{2-1}\) = 3
[∵ \(\underset{\theta \rightarrow 0}{\mathrm{Lt}} \frac{\sin ^{-1} \theta}{\theta}=\underset{\theta \rightarrow 0}{\mathrm{Lt}} \frac{\tan ^{-1} \theta}{\theta}\) = 1]
Since f(x) is continuous ∀ x ∈ (- 1, 1)
∴ f(x) is continuous at x = 0 ∈ (- 1, 1).
Thus, f(0) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = 3.

Question 13.
If f(x) = \(\left\{\begin{array}{cc}
\frac{1-\tan x}{4 x-\pi}, & x \neq \frac{\pi}{4} \\
k, & x=\frac{\pi}{4}
\end{array}\right.\) is continuous at x = \(\frac{\pi}{4}\), then the value of k is
(a) 1
(b) – 1
(c) \(\frac{1}{2}\)
(d) – \(\frac{1}{2}\)
Solution:
(d) – \(\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 2

Given f(x) is continuous at x = \(\frac{\pi}{4}\)
∴ \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) f(x) = f(latex]\frac{\pi}{4}[/latex])
⇒ – \(\frac{1}{2}\) = k.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 14.
If f(x) = \(\left\{\begin{array}{cc}
\tan \left(\frac{\pi}{4}-x\right) & x \neq \frac{\pi}{4} \\
k, & x=\frac{\pi}{4}
\end{array}\right.\) is continuous at x = \(\frac{\pi}{4}\), then the value of k is
(a) 1
(b) 2
(c) \(\frac{1}{2}\)
(d) none of these
Solution:
(c) \(\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 3

Given f(x) is continuous at x = \(\frac{\pi}{4}\)
∴ \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) f(x) = f(\(\frac{\pi}{4}\))
⇒ \(\frac{1}{2}\) = k.

Question 15.
If f(x) = \(\left\{\begin{array}{cc}
\frac{1-\cos p x}{x \sin x}, & x \neq 0 \\
\frac{1}{2}, & x=0
\end{array}\right.\) is continuous at x = 0, then p is equal to
(a) 2
(b) – 2
(c) 1, – 1
(d) none of these
Solution:
(c) 1, – 1

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 4

∴ \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) f(x) = f(0)
⇒ \(\frac{p^2}{2}=\frac{1}{2}\)
⇒ p = 1.

Question 16.
If f(x) = \(\left\{\begin{array}{cc}
\frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}, & x \neq 0 \\
k, & x=0
\end{array}\right.\), then which value of k will make function f continuous at x = 0?
(a) 1
(b) – 1
(c) 0
(d) none of these
Solution:
(d) none of these

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 5

When x → 0
⇒ sin x < 0 as x lies in IVth quadrant
⇒ |sin x| = – sin x
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = – 1
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) ≠ \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x)
Thus f(x) is discontinuous function.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 17.
If f(x) = \(\left\{\begin{array}{cc}
x^2 \sin \frac{1}{x}, & x \neq 0 \\
k, & x=0
\end{array}\right.\) is continuous at x = 0, then the value of k
(a) 1
(b) – 1
(c) 0
(d) none of these
Solution:
(c) 0

Let g(x) = x2
and h(x) = sin \(\frac{1}{x}\)
Here \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x2 = 0
and |h(x)| = |sin \(\frac{1}{x}\)| ≤ 1 ∀ x ∈ R – {0}
Thus h(x) is bounded in the ngd of o.
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) h(x) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x2 sin \(\frac{1}{x}\) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = 0
and f(0) = k
Given f(x) is continuous at x = 0
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = f(0)
⇒ 0 = k.

Question 18.
If f(x) = \(\left\{\begin{array}{rr}
m x+1, & x \geq \frac{\pi}{2} \\
\sin x+n, & x<\frac{\pi}{2}
\end{array}\right.\) is continuous at x = \(\frac{\pi}{2}\), then
(a) m = 1, n = 0
(b) m = \(\frac{n \pi}{2}\) + 1
(c) n = \(\frac{m \pi}{2}\)
(d) m = n = \(\frac{\pi}{2}\)
Solution:
\(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{+}}{2}
\end{gathered}\) f(x) = \(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{+}}{2}
\end{gathered}\) mx + 1
= \(\frac{m \pi}{2}\) + 1
\(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{-}}{2}
\end{gathered}\) f(x) = \(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{-}}{2}
\end{gathered}\) sin x + n
= sin \(\frac{\pi}{2}\) + n
= 1 + n
Since f(x) is continuous at x = \(\frac{\pi}{2}\)
∴ \(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{-}}{2}
\end{gathered}\) f(x) = \(\begin{gathered}
\mathrm{Lt} \\
x \rightarrow \frac{\pi^{-}}{2}
\end{gathered}\) f(x)
⇒ \(\frac{m \pi}{2}\) + 1 = 1 + n
⇒ n = \(\frac{m \pi}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 19.
The functionf(x) = | x | at x = 0 is
(a) continuous but not differentiable
(b) differentiable but not continuous
(c) continuous and differentiable
(d) discontinuous and not differentiable
Solution:
(a) continuous but not differentiable

\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) |x|
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x = 0
and \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) |x|
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) – x = 0
and f(0) = |0| = 0
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0)
∴ f(x) is continuous at x = 0
Lf'(0) = \(\ {Lt}_{x \rightarrow 0^{-}} \frac{|x|-0}{x-0}\)
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\)
= – 1
Rf'(0) = \(\underset{x \rightarrow 0^{+}}{\ {Lt}} \frac{|x|-0}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{x}{x}\)
= 1
∴ Lf'(0) ≠ Rf'(0)
⇒ f(x) is not differentiable at x = 0.

Question 20.
The function f(x) = |x| at x = 0 is
(a) continuous but not differentiable
(b) differentiable but not continuous
(c) continuous and differentiable
(d) neither continuous nor differentiable
Solution:
(c) continuous and differentiable

f(x) = x |x|
= \(\left\{\begin{aligned}
-x^2 & ; \quad x<0 \\
x^2 & ; \quad x \geq 0
\end{aligned}\right.\)

Continuity at x = 0:
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x2 = 0
\(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) – x2 = 0
and f(0) = 0
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0)
⇒ f(x) is continuous at x = 0.

Differentiability at x = 0:
Lf'(0) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) \(\frac{-x^2-0}{x}\)
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) x = 0
and Rf'(0) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) \(\frac{x^2-0}{x}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x = 0
∴ Lf'(0) = Rf'(0)
⇒ f(x) is continuous at x = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 21.
The derivative of the fiunction f(x) = x |x| at x = 0 is
(a) 1
(b) 0
(c) 2
(d) – 2
Solution:
(c) 2

f(x) = x |x|
= \(\left\{\begin{aligned}
-x^2 & ; \quad x<0 \\
x^2 & ; \quad x \geq 0
\end{aligned}\right.\)

Continuity at x = 0:
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x2 = 0
\(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) – x2 = 0
and f(0) = 0
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0)
⇒ f(x) is continuous at x = 0.

Differentiability at x = 0:
Lf'(0) = \(\ {Lt}_{x \rightarrow 0^{-}} \frac{-x^2-0}{x}\)
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) x = 0
and Rf'(0) = \(\ {Lt}_{x \rightarrow 0^{+}} \frac{x^2-0}{x}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x = 0
∴ Lf'(0) = Rf'(0)
⇒ f(x) is continuous at x = 0.

Question 22.
If f(x) = \(\left\{\begin{array}{cc}
x, & x \leq 0 \leq 1 \\
2 x-1, & x>1
\end{array}\right.\), then
(a) f is discontinuous at x = 1
(b) f is differentiable at x = 1
(c) f is continuous but not differentiable at x = 1
(d) none of these
Solution:
(c) f is continuous but not differentiable at x = 1

\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 2x – 1
= 2 × 1 – 1 = 1
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) x = 1
and f(1) = 1
∴ \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = f(1)
⇒ f(x) is continuous at x = 1.

Differentiability at x = 1:
Lf'(1) = \(\ {Lt}_{x \rightarrow 1^{-}} \frac{x-1}{x-1}\) = 1
Rf'(1) = \(\ {Lt}_{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{2 x-1-1}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-1}} \frac{2(x-1)}{x-1}\)
= 2
∴ Lf'(1) ≠ Rf'(1)
⇒ f(x) is not differentiable at x = 1.

Question 23.
If f(x) = \(\left\{\begin{array}{cc}
a x^2+1, & x>1 \\
x+a, & x \leq 1
\end{array}\right.\) is derivable at x = 1, then the value of a is
(a) 0
(b) 1
(c) \(\frac{1}{2}\)
(d) 2
Solution:
(c) \(\frac{1}{2}\)

at x = 1
Lf'(1) = \(\ {Lt}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{x+a-1-a}{x-1}\) = 1
and Rf'(1) = \(\ {Lt}_{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{a x^2+1-1-a}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{a\left(x^2-1\right)}{x-1}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) a(x + 1) = 2a
Since f(x) is derivable at x = 1
∴ Lf'(1) = Rf'(1)
⇒ 1 = 2a
⇒ a = \(\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 24.
The function f(x) = |x| + |x – 1|
(a) differentiable at x = 0 but not at x = 1
(b) differentiable at x = 1 but not at x = 0
(c) neither differentiable at x = 0 nor at x = 1
(d) differentiable at x = 0 as well as at x = 1
Solution:
(c) neither differentiable at x = 0 nor at x = 1

Given f(x) = |x| + |x – 1|
= \(\left\{\begin{array}{ccc}
-x-(x-1) & ; & x<0 \\
x-(x-1) & ; & 0 \leq x<1 \\
x+x-1 & ; & x \geq 1
\end{array}\right.\)
⇒ f(x) = \(\left\{\begin{array}{ccc}
-2 x+1 & ; & x<0 \\
1 & ; & 0 \leq x<1 \\
2 x-1 & ; & x \geq 1
\end{array}\right.\)

at x = 0:
Lf'(0) = \(\ {Lt}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0^{-}} \frac{-2 x+1-1}{x}\)
= – 2
Rf'(0) = \(\ {Lt}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{1-1}{x}\) = 0
∴ Lf'(0) ≠ Rf'(0)
∴ f is not differentiable at x = 0.

at x = 1:
Lf'(1) = \(\ e{Lt}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{1-1}{x-1}\) = 0
and Rf'(1) = \(\ {Lt}_{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{2 x-1-1}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{2(x-1)}{x-1}\) = 2
∴ Lf'(1) ≠ Rf'(1)
∴ f is not differentiable at x = 1.

Question 25.
The derivative of f(x) = 3 |2 + x| at x = – 3 is
(a) 3
(b) – 3
(c) 0
(d) d0es not exist
Solution:
(b) – 3

Given f(x) = 3 |2 + x|
∴ f'(x) = \(\frac{3(2+x)}{|(2+x)|}\) × 1
⇒ f'(- 3) = \(\frac{3(2-3)}{|2-3|}\) = – 3.

Question 26.
The derivative of f(x) = |x – 1| + |x – 3| at x = 2 is
(a) 2
(b) – 2
(c) 0
(d) does not exist
Solution:
(c) 0

Given f(x) = |x – 1| + |x – 3|
∴ f'(x) = \(\frac{x-1}{|x-1|}+\frac{x-3}{|x-3|}\)
⇒ f'(2) = \(\frac{2-1}{|2-1|}+\frac{2-3}{|2-3|}\)
= \(\frac{1}{|1|}-\frac{1}{|-1|}\)
= 1 – 1 = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 27.
The function f(x) = e|x| is
(a) continuous everywhere but not differentiable at x = 0
(b) continuous and differentiable everywhere
(e) not continuous at x = 0
(d) none of these
Solution:
(a) continuous everywhere but not differentiable at x = 0

\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) ex
= e0 = 1
and \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) e– x
= e0 = 1
and f(0) = e|0|
= e = 1
Thus, \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0)
∴ f(x) is continuous at x = 0.
Since exponential function is continuous for all x < 0 and x > 0
Thus f(x) is continuous everywhere.
Further when x < 0 ; f (x) = e– x is differentiable function.
when x > 0 ; f(x) = ex is differentiable function.

at x = 0:
Lf'(0) = \(\ {Lt}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0^{-}} \frac{e^{-x}-1}{x}\)
= – \(\ {Lt}_{x \rightarrow 0^{-}} \frac{e^{-x}-1}{-x}\)
= – 1
and Rf'(0) = \(\ {Lt}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0^{+}} \frac{e^x-1}{x}\)
= 1
∴ Lf'(0) ≠ Rf'(0)
Thus f(x) is not differentiable at x = 1.

Question 28.
The function f(x) = |sin x|
(a) f is differentiable everywhere
(b) f is continuous everywhere but not differentiable at x = nπ, n ∈ Z
(c) f is continuous everywhere but not differentiable atx=(2n+1) \(\frac{\pi}{2}\), n ∈ Z
(d) none of these
Solution:
(b) f is continuous everywhere but not differentiable at x = nπ, n ∈ Z

f(x) = |sin x|
= \(\left\{\begin{aligned}
-\sin x ; & x<n \pi \\
\sin x ; & x \geq n \pi
\end{aligned}\right.\) ;
x = even
x = nπ (n even)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 6

∴ L.H.D. ≠ R.H.D.
Thus f(x) is not differentiable at x = nπ (n even)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 7

∴ L.H.D. = R.H.D.
Thus f(x) is not differentiable at x = nπ (n = odd)
Hence f(x) is not differentiable at x = nπ, n ∈ Z.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 29.
The set of numbers where the function f given by f (x) = | 2x – 1 | cos x is differentiable is
(a) R
(b) R – {\(\frac{1}{2}\)}
(c) (0, ∞)
(d) none of these
Solution:
Refer to MCQ-28 (RD Sharma 10 + 2) Chapter 9.

Question 30.
If y = log (sec ex2), then \(\frac{d y}{d x}\) =
(a) x2 ex2 tan ex2
(b) ex2 tan ex2
(c) 2x ex2 tan ex2
(d) none of these
Solution:
(c) 2x ex2 tan ex2

Given y = log (sec ex2)
∴ \(\frac{d y}{d x}\) = \(\frac{1}{\sec e^{x^2}} \frac{d}{d x}\) sec ex2
= \(\frac{1}{\sec e^{x^2}}\) sec ex2 . tan ex2 . ex2 . 2x
= ex2 . 2x tan ex2.

Question 31.
If y = log \(\left(\frac{1-x^2}{1+x^2}\right)\), |x| < 1, then \(\frac{d y}{d x}\) =
(a) \(\frac{4 x^3}{1-x^4}\)
(b) \(\frac{-4 x}{1-x^4}\)
(c) \(\frac{1}{4-x^4}\)
(d) \(\frac{-4 x^3}{1-x^4}\)
Solution:
(b) \(\frac{-4 x}{1-x^4}\)

Given y = log \(\left(\frac{1-x^2}{1+x^2}\right)\)
= log (1 – x2) – log (1 + x2)
∴ \(\frac{d y}{d x}\) = \(\frac{-2 x}{1-x^2}-\frac{2 x}{1+x^2}\)
= \(\frac{-2 x\left(1+x^2+1-x^2\right)}{1-x^4}\)
= \(\frac{-4 x}{1-x^4}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 32.
If f(x) = log x, then the derivative of f (log x) w.r.t. x is
(a) \(\frac{\log x}{x}\)
(b) \(\frac{x}{\log x}\)
(c) x log x
(d) \(\frac{1}{x \log x}\)
Solution:
(d) \(\frac{1}{x \log x}\)

Given f(x) = log x
⇒ f(log x) = log (log x)
⇒ \(\frac{d}{d x}\) f (log x) = \(\frac{1}{\log x}\) \(\frac{d}{d x}\) log x
= \(\frac{1}{x \log x}\).

Question 33.
For the curve √x + √y = 4, \(\frac{d y}{d x}\) at (\(\left(\frac{1}{4}, \frac{1}{4}\right)\)) is
(a) – 1
(b) 1
(c) 2
(d) \(\frac{1}{2}\)
Solution:
(a) – 1

Given √x + √y = 4
Diff. both sides w.r.t. x ; we have
\(\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}\) = 0
\(\frac{d y}{d x}=-\sqrt{\frac{y}{x}}\)
at (\(\left(\frac{1}{4}, \frac{1}{4}\right)\)) ;
\(\frac{d y}{d x}\) = – \(\sqrt{\frac{\frac{1}{4}}{\frac{1}{4}}}\) = – 1

Question 34.
If y = \(\sqrt{\sin x+y}\), then \(\frac{d y}{d x}\) =
(a) \(\frac{\cos x}{2 y-1}\)
(b) \(\frac{\cos x}{1-2 y}\)
(c) \(\frac{\sin x}{2 y-1}\)
(d) \(\frac{\sin x}{1-2 y}\)
Solution:
(a) \(\frac{\cos x}{2 y-1}\)

Given y = \(\sqrt{\sin x+y}\)
⇒ y2 = sin x + y ;
diff. both sides w.r.t. x ;
2y \(\frac{d y}{d x}\) = cos x + \(\frac{d y}{d x}\)
⇒ (2y – 1) \(\frac{d y}{d x}\) = cos x
⇒ \(\frac{d y}{d x}\) = \(\frac{\cos x}{2 y-1}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 35.
The derivative of sec (tan-1 x) w.r.t. x is
(a) \(\frac{x}{1+x^2}\)
(b) \([\frac{1}{\sqrt{1+x^2}}/latex]
(c) [latex]\frac{x}{\sqrt{1+x^2}}\)
(d) x \(\sqrt{1+x^2}\)
Solution:
(c) \(\frac{x}{\sqrt{1+x^2}}\)

Let y = sec (tan-1 x)
put tan-1 x = θ
⇒ x = tan θ

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs 8

∴ y = sec θ
= \(\sqrt{x^2+1}\)
⇒ \(\frac{d y}{d x}\) = \(\frac{1}{2}\) (x2 + 1)\(-\frac{1}{2}\) \(\frac{d}{d x}\) (x2 + 1)
= \(\frac{2 x}{2 \sqrt{x^2+1}}\)
= \(\frac{x}{\sqrt{x^2+1}}\)

Question 36.
If f(x) = x tan-1 x, then f'(1) is equal to
(a) \(\frac{\pi}{4}+\frac{1}{2}\)
(b) \(\frac{\pi}{4}-\frac{1}{2}\)
(c) \(\frac{1}{2}-\frac{\pi}{4}\)
(d) none of these
Solution:
(a) \(\frac{\pi}{4}+\frac{1}{2}\)

Given f(x) = x tan-1 x
f'(x) = tan-1 x . 1 + \(\frac{x}{1+x^2}\)
f'(1) = tan-1 1 + \(\frac{1}{1+1^2}\)
= \(\frac{\pi}{4}+\frac{1}{2}\).

Question 37.
The derivative of tan-1 \(\left(\frac{3 x-4 x^3}{1-3 x^2}\right)\) w.r.t. x is
(a) \(\frac{1}{1+x^2}\)
(b) \(\frac{3}{1+9 x^2}\)
(c) \(\frac{3}{1+x^2}\)
(d) 3 sec2 3x
Solution:

Let y = tan-1 \(\left(\frac{3 x-4 x^3}{1-3 x^2}\right)\)
put x = tan θ
⇒ θ = tan-1 x
⇒ y = tan-1 \(\left(\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\right)\)
= tan-1 (tan 3θ)
Thus y = 3θ
= 3 tan-1 x
⇒ \(\frac{d y}{d x}\) = \(\frac{3}{1+x^2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 38.
The derivative of tan-1 x w.r.t. cot-1 x is
(a) \(\frac{\pi}{2}\)
(b) – 1
(c) 1
(d) none of these
Solution:
(b) – 1

Let y = tan-1 x
and z = cot-1 x
∴ \(\frac{d y}{d x}=\frac{1}{1+x^2}\)
and \(\frac{d z}{d x}=\frac{-1}{1+x^2}\)
we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(– \frac{\frac{1}{1+x^2}}{\frac{1}{1+x^2}}\) = – 1

Question 39.
The derivative of cos-1 (2x2 – 1) w.r.t. cos-1 x is
(a) 2
(b) \(\frac{2}{x}\)
(c) 1 – x2
(d) \(\frac{-1}{2 \sqrt{1-x^2}}\)
Solution:
(a) 2

Let y = cos-1 (2x2 – 1) ………..(1)
and z = cos-1 x ………..(2)
we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
putting x = cos θ
∴ θ = cos-1 x in eqn. (1) ;
y = cos-1 (2 cos2 θ – 1)
= cos-1 (cos 2θ)
= 2θ
= 2 cos-1 x
∴ y = 2z
⇒ \(\frac{d y}{d z}\) = 2.

Question 40.
The derivative of sin-1 \(\left(\frac{2 x}{1+x^2}\right)\) w.r.t. tan-1 \(\left(\frac{2 x}{1-x^2}\right)\) is
(a) \(\frac{1}{2}\)
(b) 2
(c) \(\frac{1-x^2}{1+x^2}\)
(d) 1
Solution:
(d) 1

Let y = sin-1 \(\left(\frac{2 x}{1+x^2}\right)\)
= 2 tan-1 x
and z = tan-1 \(\left(\frac{2 x}{1-x^2}\right)\)
= 2 tan-1 x
∴ y = z
⇒ \(\frac{d y}{d z}\) = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 41.
The derivative of tan-1 \(\left(\frac{x}{\sqrt{1-x^2}}\right)\) w.r.t. x is
(a) \(\frac{1}{\sqrt{1-x^2}}\)
(b) \(\frac{1}{\sqrt{1-x^2}}\)
(c) \(– \frac{1}{\sqrt{1-x^2}}\)
(d) none of these
Solution:
(b) \(\frac{1}{\sqrt{1-x^2}}\)

Let y = tan-1 \(\left(\frac{x}{\sqrt{1-x^2}}\right)\)
put x = sin θ
∴ θ = sin-1 x
∴ y = tan-1 \(\left(\frac{\sin \theta}{\sqrt{1-\sin ^2 \theta}}\right)\)
= tan-1 (tan θ)
= θ
= sin-1 x
⇒ \(\frac{d y}{d x}=\frac{1}{\sqrt{1-x^2}}\)

Question 42.
The derivative of sin-1 \(\left(\frac{x}{\sqrt{1+x^2}}\right)\) w.r.t. x is
(a) \(\frac{1}{\sqrt{1-x^2}}\)
(b) \(\frac{1}{\left(1+x^2\right)^{\frac{3}{2}}}\)
(c) \(\frac{1}{1+x^2}\)
(d) none of these
Solution:
(c) \(\frac{1}{1+x^2}\)

Let y = sin-1 \(\left(\frac{x}{\sqrt{1+x^2}}\right)\)
put x = tan θ
∴ θ = tan-1 x
⇒ y = sin-1 \(\left(\frac{\tan \theta}{\sqrt{1+\tan ^2 \theta}}\right)\)
= sin-1 \(\left(\frac{\tan \theta}{\sqrt{1+\tan ^2 \theta}}\right)\)
= sin-1 \(\left(\frac{\tan \theta}{\sec \theta}\right)\)
⇒ y = θ = tan-1 x
Thus, \(\frac{d y}{d x}=\frac{1}{1+x^2}\).

Question 43.
If y = cos-1 \(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) + cosec-1 \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\) then \(\frac{d y}{d x}\) is equal to
(a) \(\frac{\pi}{2}\)
(b) 0
(c) 1
(d) none of these
Solution:
(b) 0

Given y = cos-1 \(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) + cosec-1 \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
⇒ y = cos-1 \( \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) + sin-1 \( \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
[∵ cosec-1 x = sin-1 \(\frac{1}{x}\)]
⇒ y = \(\frac{\pi}{2}\)
[∵ cos-1 x + sin-1 x = \(\frac{\pi}{2}\) ∀ x ∈ [- 1, 1]]
∴ \(\frac{d y}{d x}\) = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 44.
If y = a (1 + cos t) and x = a (t – sin t) then \(\frac{d y}{d x}\) is equal to
(a) tan \(\frac{t}{2}\)
(b) – tan \(\frac{t}{2}\)
(c) – cot \(\frac{t}{2}\)
(d) none of these
Solution:
(c) – cot \(\frac{t}{2}\)

Given y = a (1 + cos t)
∴ \(\frac{d y}{d t}\) = – a sin t
and x = a (t – sin t)
∴ \(\frac{d x}{d t}\) = a (1 – cos t)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-a \sin t}{a(1-\cos t)}\)
= \(\frac{-2 \sin \frac{t}{2} \cos \frac{t}{2}}{2 \sin ^2 \frac{t}{2}}\)
= – cot \(\frac{t}{2}\).

Question 45.
If x = a cos3 t and y = a sin3 t, then \(\frac{d y}{d x}\) is equal to
(a) cos t
(b) sec t
(c) cosec t
(d) – tan t
Solution:
(d) – tan t

Given x = a cos3 t
⇒ \(\frac{d x}{d t}\) = 3a cos2 t (- sin t)
and y = a cos3 t
⇒ \(\frac{d y}{d t}\) = 3a sin2 t (cos t)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{3 a \sin ^2 t \cos t}{-3 a \cos ^2 t \sin t}\)
= – tan t.

Question 46.
If x = t2 and y = t3, then \(\frac{d^2 y}{d x^2}\) is equal to
(a) \(\frac{3}{2}\)
(b) \(\frac{3}{2}\) t
(c) \(\frac{3}{2 t}\)
(d) \(\frac{3}{4 t}\)
Solution:
(d) \(\frac{3}{4 t}\)

Given x = t2
⇒ \(\frac{d x}{d t}\) = 2t
and y = t3
⇒ \(\frac{d y}{d t}\) = 3t2
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{3 t^2}{2 t}=\frac{3}{2} t\)
⇒ \(\frac{d^2 y}{d x^2}=\frac{d}{d t}\left(\frac{3}{2} t\right) \frac{d t}{d x}\)
= \(\frac{3}{2} \times \frac{1}{2 t}=\frac{3}{4 t}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 47.
The derivative of log x with respect to \(\frac{1}{x}\) is
(a) – \(\frac{1}{x^3}\)
(b) – \(\frac{1}{x}\)
(c) – x
(d) \(\frac{1}{x^3}\)
Solution:
(c) – x

Let y = log x
⇒ \(\frac{d y}{d x}\) = \(\frac{1}{x}\)
and z = \(\frac{1}{x}\)
⇒ \(\frac{d z}{d x}\) = \(-\frac{1}{x^2}\)
we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{\frac{1}{x}}{-\frac{1}{x^2}}\)
= – x.

Question 48.
The function f : R → R given by f(x) = – |x – 1| is
(a) continuous as well as differentiable at x = 1
(b) not continuous but differentiable at x = 1
(c) continuous but not differentiable at x = 1
(d) neither continuous nor differentiable atx= 1.
Solution:
(c) continuous but not differentiable at x = 1

Given f(x) = – |x – 1|
= \(\left\{\begin{array}{ccc}
(x-1) & ; & x<1 \\
-(x-1) & ; & x \geq 1
\end{array}\right.\)

Continuity at x = 1:
\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) – (x – 1)
= – (1 – 1) = 0
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) (x – 1)
= (1 – 1) = 0
and f(1) = – (1 – 1) = 0
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = f(1)
Thus f(x) is continuous at x = 1.

Differentiability at x = 1:
Lf'(1) = \(\ {Lt}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{x-1-0}{x-1}\)
= 1
Rf'(0) = \(\ {Lt}_{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{-(x-1)-0}{x-1}\)
= – 1
∴ Lf'(1) ≠ Rf'(1)
Thus, f(x) is not differentiable at x = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 49.
If y = f(x2) and f'(x) = e√x, then \(\frac{d y}{d x}\) is equal to
(a) 2x e2√x
(b) 2x ex
(c) 4x e√x
(d) 4x ex
Solution:
(b) 2x ex

Given y = f(x2)
∴ \(\frac{d y}{d x}\) = f'(x2) . 2x
= \(e^{\sqrt{x^2}}\) . 2x
= 2x ex
[∵ f'(x) = e√x
⇒ f'(x2) = \(e^{\sqrt{x^2}}\).

Question 50.
If y = loge \(\left(\frac{x^2}{e^2}\right)\), then \(\frac{d^2 y}{d x^2}\) is equal to
(a) \(-\frac{1}{x}\)
(b) \(-\frac{1}{x^2}\)
(c) \(\frac{2}{x^2}\)
(d) \(-\frac{2}{x^2}\)
Solution:
(d) \(-\frac{2}{x^2}\)

Given y = loge \(\left(\frac{x^2}{e^2}\right)\)
= log x2 – log e2
= 2 log x – log e2
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}=\frac{2}{x}\)
∴ \(\frac{d^2 y}{d x^2}=-\frac{2}{x^2}\).

Question 51.
In Rolle’s theorem, the value of c for the function f (x) = x3 – 3x in the interval [0, √3] is
(a) 1
(b) – 1
(c) \(\frac{1}{3}\)
(d) \(\frac{2}{3}\)
Solution:
(a) 1

Given f(x) = x3 – 3x
∴ f’(x) = 3x2 – 3
which exists for all x ∈ R
Since f (x) is polynomial in x so it is continuous and differentiable everywhere.
f(x) is continuous in [0, π] and f(x) is diff. in (0, √3)
Also, f(0) = 0 ;
f(√3) = (√3)3 – 3√3
= 3√3 – 3√3 = 0
∴ f(0) = f(5)
Thus, all the three conditions of Rolle’s theorem are satisfied so ∃ atleast one real number c ∈ (0, √3) s.t f’ (c) = 0
⇒ 3c2 – 3 = 0
⇒ c = ± 1
∴ c = 1 ∈ (0, √3).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 52.
The value of c is Rolle’s theorem for the function f(x) = ex sin x, x ∈[0, π], is
(a) \(\frac{\pi}{6}\)
(b) \(\frac{\pi}{4}\)
(c) \(\frac{\pi}{2}\)
(d) \(\frac{3 \pi}{4}\)
Solution:
(d) \(\frac{3 \pi}{4}\)

Given f(x) = ex sin x
Since exponential function is continuous and differentiable everywhere.
f’(x) = ex cos x + sin x ex
= ex (cos x + sin x)
Further the product of continuous and differentiable is continuous and differentiable.
∴ f(x) is continuous in [0, π] and differentiable in (0, π).
Now f(0) = e0 sin 0 = 0
f(π) = eπ sin π = 0
∴ f(0) = f(π)
Thus all the three conditions of Rolle’s theorem are satisfied so ∃ atleast one real number c ∈ (0, π).
s.t. f'(c) = 0
⇒ ec (cos c + sin c)= 0
⇒ cos c + sin c = 0
[∵ ec > 0]
⇒ tan c = – 1
= – tan \(\frac{\pi}{4}\)
= tan (- \(\frac{\pi}{4}\))
⇒ c = nπ – \(\frac{\pi}{4}\), n ∈ Z
⇒ c = \(\frac{3 \pi}{4}\), – \(\frac{\pi}{4}\), ………….. but c ∈ (0, π)
∴ c = \(\frac{3 \pi}{4}\).

Question 53.
Rolle’s theorem is applicable in the interval [- 1, 1] for the function
(a) f (x) = x
(b) f(x) = x2
(c) f(x) = x3 + 2
(d) f(x) = |x|
Solution:
(b) f(x) = x2

Now f(x) = x2, which is polynomial in x and hence continuous and differentiable everywhere
∴ f (x) is continuous in [- 1, 1] and differentiable in (- 1, 1).
Further f(1) = 12 = 1 ;
f(- 1) = (- 1)2 = 1
∴ f(1) = f(- 1)
So all three conditions of Rolle’s theorem
so ∃ atleastonerealnumber c ∈ (- 1, 1)
s.t f’(c) = 0
⇒ 2c = 0
⇒ c = 0 ∈ (- 1, 1)
Rolle’s theorem is applicable.

Question 54.
The value of c in Lagrange’s Mean Value= theorem for the function f(x) = x (x – 2) in the interval [1, 2] is
(a) \(\frac{3}{2}\)
(b) \(\frac{2}{3}\)
(c) \(\frac{3}{4}\)
(d) \(\frac{5}{4}\)
Solution:
(a) \(\frac{3}{2}\)

Given f(x) = x (x – 2)
which is a polynomial in x and hence continuous and differentiable everywhere.
Now f’ (x) = 2x – 2 which exists ∀ x ∈ R
Thus f (x) is continuous in [1, 2] and differentiable in (1,2).
So all the conditions of Lagrange’s mean value theorem are satisfied so ∃atleast one real no c ∈ (1, 2)
s.t. \(\frac{f(2)-f(1)}{2-1}\) = f’9c) ………….(1)
⇒ Now f(2) = 0;
f(1) = 1 (1 – 2) = – 1
∴ from (1) ;
\(\frac{0-(-1)}{1}\) = 2x – 2
⇒ 2c – 2 = 1
⇒ 2c = 3
⇒ c ∈ (1, 2).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability MCQs

Question 55.
The value of c in Lagrange’s Mean Value theorem for the function f(x) = x + \(\frac{1}{x}\) in the interval [1, 3] is
(a) 1
(b) 2
(c) √3
(d) – √3
Solution:
(c) √3

Given f(x) = x + \(\frac{1}{x}\)
∴ f'(x) = 1 – \(\frac{1}{x^2}\)
which exists for all x ∈ R – {0}
Thus f(x) is continuous in [1, 3] and differentiable in (1, 3).
So all the conditions of Lagrange’s mean value theorem arte satisfied.
So ∃ atleast one real number c ∈ (1, 3).
s.t. \(\frac{f(3)-f(1)}{3-1}\) = f'(3) …………(1)
Now f(1) = 1 + \(\frac{1}{1}\) = 2 ;
f(3) = 3 + \(\frac{1}{3}\) = \(\frac{10}{3}\)
∴ from (1) ;
⇒ \(\frac{\frac{10}{3}-2}{2}=1-\frac{1}{c^2}\)
⇒ \(\frac{4}{6}=1-\frac{1}{c^2}\)
⇒ \(\frac{1}{c^2}=1-\frac{2}{3}=\frac{1}{3}\)
⇒ c2 = 3
⇒ c = ± √3
Here c = √3 ∈ (1, 3).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Peer review of ML Aggarwal Maths for Class 12 Solutions Chapter 5 Continuity and Differentiability Chapter Test can encourage collaborative learning.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 1.
Is the function defined by f(x) = x2 – sin x + 5 continuous at x = π? (NCERT)
Solution:
Given, f(x) = x2 – sin x + 5
\(\underset{x \rightarrow \pi^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) f(π + h)
= \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) [(π + h)2 – sin (π + h) + 5]
= \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) [(π + h)2 + sin h + 5]
= π2 + 5
and \(\underset{h \rightarrow 0^{-}}{\ {Lt}}\) f(x) = \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) f(π – h)
= \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) [(π – h)2 – sin (π – h) + 5)]
= \(\underset{h \rightarrow 0^{+}}{\ {Lt}}\) [(π – h)2 – sin h + 5]
= π2 + 5
= f(π)
∴ \(\mathrm{Lt}_{x \rightarrow {\pi}}\) f(x) = f(π)
Thus f(x) is continuous at x = π.

Question 2.
(i) Find the value of k so that f(x) = \(\begin{cases}\frac{\sin k x}{x}, & x<0 \\ 8-3 x & x \geq 0\end{cases}\) may be continuous at x = 0.
(ii) If the function f defined by f(x) = \(\left\{\begin{array}{cc}
\frac{1-\cos 2 x}{2 x^2}, & x \neq 0 \\
k & , x=0
\end{array}\right.\) is continuous at x = 0, find the value of k.
(iii) If the function f is defined by f(x) = \(\left\{\begin{array}{cc}
\frac{1-\tan x}{4 x-\pi}, & 0<x<\frac{\pi}{2}, x \neq \frac{\pi}{4} \\
k, & x=\frac{\pi}{4}
\end{array}\right.\) is continuous at x = \(\frac{\pi}{4}\), find the value of k.
Solution:
(i) L.H.Limit = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) \(\frac{\sin k x}{x}\)
= k . \(\frac{\sin k x}{k x}\)
= k × 1 = k
[∵ \(\underset{\theta \rightarrow 0}{\ {Lt}} \frac{\sin \theta}{\theta}\) = 1]
R.H.Limit = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) 8 – 3x
= 8 – 3 × 0 = 8
and f(0) = 8 – 3 × 0 = 8
Now f(x) is continuous at x = 0
∴ \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0)

(ii) \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = \(\ {Lt}_{x \rightarrow 0} \frac{1-\cos 2 x}{2 x^2}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{2 \sin ^2 x}{2 x^2}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{\sin ^2 x}{x^2}\)
= \(\left[\ {Lt}_{x \rightarrow 0} \frac{\sin x}{x}\right]^2\)
= 12 = 1
also f(0) = k
since f(x) is continuous at x = 0
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = f(0)
⇒ 1 = k

(iii) \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) f(x) = \(\ {Lt}_{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{4 x-\pi}\)
put x = \(\frac{\pi}{4}\) + h
so that as x → \(\frac{\pi}{4}\)
⇒ h → 0

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 1

Also, f(\(\frac{\pi}{4}\)) = k
Since f(x) be continuous at x = \(\frac{\pi}{4}\)
∴ \(\mathrm{Lt}_{x \rightarrow \frac{\pi}{4}}\) f(x) = f(\(\frac{\pi}{4}\))
⇒ – \(\frac{1}{2}\) = k
Hence k = – \(\frac{1}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 3.
Find the points of discontinuity (if any) of the following functions:
(i) f(x) = \(\begin{cases}\frac{x}{|x|}, & \text { if } \quad x<0 \\ -1, & \text { if } x \geq 0\end{cases}\) (NCERT)
(ii) f(x) = |x| – |x + 1| (NCERT)
Solution:
(i) Let c ∈ R be any arbitrary element
Since Df = R

Case – I:
When c < 0,
f(c) = \(\frac{c}{|c|}\)
\(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) \(\frac{x}{|x|}\)
= \(\frac{c}{|c|}\)
= f(c)
∴ f is continuous for all c < 0. Case – II: when c > 0 ,
f(c) = – 1
\(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) – 1
= – 1
= f(c)
∴ f(c) is continuous for all c > 0.

Case – III:
at c = 0
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) – 1 = – 1
and \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) \(\frac{x}{|x|}\)
= \(\ {Lt}_{x \rightarrow 0^{-}} \frac{x}{-x}\) = – 1
[∵ if x < 0 then |x| = – x]
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = f(0) = 1
Thus f is continuous at x = 0.
Thus, by combining all three cases, f is continuous at everywhere on R and has no points of discontinuity.

(ii) Given f(x) = |x| – |x – 1|
= \(\left\{\begin{array}{ccc}
-x+x-1 & ; & x<0 \\
x+x-1 & ; & 0 \leq x<1 \\
x-(x-1) & ; & x \geq 1
\end{array}\right.\)
= \(\left\{\begin{array}{ccc}
-1 & ; & x<0 \\
2 x-1 & ; & 0 \leq x<1 \\
1 & ; & x \geq 1
\end{array}\right.\)
Hence Df = R.
So we examine f for continuity at all x ∈ R.
Let c ∈ R be any arbitrary real number.
Thus threee cases arises.

Case – I:
When c < 0 then f(c) = – 1
∴ \(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) – 1
= – 1 = f(c)
∴ f is continuous at all c < 0.

Case – II:
When 0 < c < 1
then f(c) = 2c – 1
\(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) 2x – 1
= 2c – 1 = f(c)
Thus, f is continuous for all c, where 0 < c < 1. Case – III: When c > 1 then f(c) = 1
\(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) 1 = 1 = f(c)
∴ f is continuous for all c > 1.

When x = 0:
\(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) – 1 = – 1
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) 2x – 1
= 2 × 0 – 1 = – 1
and f(0) = 0 – 1 = – 1
∴ \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = f(0)
Thus f(x) is continuous at x = 0.

When x = 1:
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) 2x – 1
= 2 – 1 = 1
\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 1 – 1 ;
f(1) = 1
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = f(1)

Thus,f is continuous at x = 1
Hence on combining all cases, f is continuous everywhere in R and has no point of discontinuity.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 3 (old).
Discuss the continuity of the function f defined by
f(x) = \(\left\{\begin{array}{l}
3, \text { if } \quad 0 \leq x \leq 1 \\
4, \text { if } 1<x<3 \\
5, \text { if } 3 \leq x \leq 10
\end{array}\right.\). (NCERT)
Solution:
Since constant function is continuous everywhere
when 0 ≤ x < 1 ;
f (x) = 3, which is a constant function
and hence continuous in 0 ≤ x < 1
When 1 < x < 3 ;
f(x) = 4, which is a constant function
and hence continuous for all x ∈ (1, 3)
When 3 f (x) = 5, which is a constant function
and hence continuous is 3 < x ≤ 10.

at x = 1:
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) 3 = 3
and \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 4 = 4
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) ≠ \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x)
Thus f is discontinuous at x = 1.

at x = 3:
\(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) 4 = 4
and \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) 5 = 5
∴ \(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) f(x)
Thus f is discontinuous at x = 3.
Hence f is continuous in [0, 10] except at x = 1 and x = 3.

Question 4.
Examine the function f(x) = |x – 1| + |x – 3| for continuity and differentiability at x I and x = 3.
Solution:
Given f(x) = |x – 1| + |x – 3|
= \(\left\{\begin{array}{ccc}
-(x-1)-(x-3) & ; & x<1 \\
(x-1)-(x-3) & ; & 1 \leq x<3 \\
(x-1)+x-3 & ; & x \geq 3
\end{array}\right.\)
= \(\left\{\begin{array}{ccc}
-2 x+4 & ; & x<1 \\
2 & ; & 1 \leq x<3 \\
2 x-4 & ; & x \geq 3
\end{array}\right.\)

Continuity at x = 1:
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) (- 2x + 4)
= – 2 + 4 = 2
\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 2 = 2
and f(1) = 2
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = f(1)
∴ f is continuous at x = 1.

Differentiability at x = 1:

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 2

∴ Lf'(1) ≠ Rf'(1)
Thus f(x) is not differentiable at x = 1.

Continuity at x = 3:
\(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) 2 = 2
and \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) 2x – 4
= 6 – 4 = 2
Also f(3) = 2 × 3 – 4
= 6 – 4 = 2
Thus, \(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 3^{+}}{\mathrm{Lt}}\) f(x) = f(3)
∴ f is continuous at x = 3.

Differentiability at x = 3:
Lf'(3) = \(\underset{x \rightarrow 3^{-}}{\mathrm{Lt}}\) \(\frac{f(x)-f(3)}{x-3}\)
= \(\ {Lt}_{x \rightarrow 3^{-}} \frac{2-2}{x-3}\)
= 0
Rf'(3) = \(\ {Lt}_{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3}\)
= \(\ {Lt}_{x \rightarrow 3^{+}} \frac{2 x-4-2}{x-3}\)
= \(\frac{2(x-3)}{x-3}\)
∴ Lf'(3) ≠ Rf'(3)
Thus f(x) is not differentiable at x = 3.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 5.
Find the derivative of the following functions w.r.t. x:
(i) \(\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}\)
(ii) \(\frac{1-\tan x}{1+\tan x}\)
(iii) sin (\(\sqrt{\sin \sqrt{x}}\)).
Solution:
(i) Let y = \(\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{(\sqrt{a}-\sqrt{x})\left(\frac{1}{2 \sqrt{x}}\right)-(\sqrt{a}+\sqrt{x})\left(-\frac{1}{2 \sqrt{x}}\right)}{(\sqrt{a}-\sqrt{x})^2}\)
= \(\frac{\sqrt{a}-\sqrt{x}+\sqrt{a}+\sqrt{x}}{2 \sqrt{x}(\sqrt{a}-\sqrt{x})^2}\)
= \(\frac{\sqrt{a}}{\sqrt{x}(\sqrt{a}-\sqrt{x})^2}\)

(ii) Let y = \(\frac{1-\tan x}{1+\tan x}\)
= tan (\(\frac{\pi}{4}\) – x)
\(\frac{d y}{d x}=\sec ^2\left(\frac{\pi}{4}-x\right) \frac{d}{d x}\left(\frac{\pi}{4}-x\right)\)
= \(-\frac{1}{\cos ^2\left(\frac{\pi}{4}-x\right)}\)
= \(\frac{-2}{1+\cos \left(\frac{\pi}{2}-2 x\right)}\)
= \(\frac{-2}{1+\sin 2 x}\)

(iii) Let y = sin (\(\sqrt{\sin \sqrt{x}}\))
Diff. both sides w.r.t. x, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 6.
Differentiate the following functions w.r.t. x:
(i) \(\frac{\tan 2 x}{1-\cot 2 x}\)
(ii) sin \(\left(\frac{1+x^2}{1-x^2}\right)\)
(iii) \(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\)
Solution:
(i) Let y = \(\frac{\tan 2 x}{1-\cot 2 x}\) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{(1-\cot 2 x) \sec ^2 2 x \cdot 2-2 \tan 2 x \ {cosec}^2 2 x}{(1-\cot 2 x)^2}\)
= \(\frac{2\left[\sec ^2 2 x-\cot 2 x \sec ^2 2 x-\tan 2 x \ {cosec}^2 2 x\right]}{(1-\cot 2 x)^2}\)
= \(\frac{2\left[\sec ^2 2 x-2 \ {cosec} 4 x-2 \ {cosec} 4 x\right]}{(1-\cot 2 x)^2}\)
= \(\frac{2\left[\sec ^2 2 x-4 \ {cosec} 4 x\right]}{(1-\cot 2 x)^2}\)

(ii) Let y = sin \(\left(\frac{1+x^2}{1-x^2}\right)\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\cos \left(\frac{1+x^2}{1-x^2}\right)\left[\frac{\left(1-x^2\right) 2 x-\left(1+x^2\right)(-2 x)}{\left(1-x^2\right)^2}\right]\)
= \(\cos \left(\frac{1+x^2}{1-x^2}\right)\left[\frac{2 x\left(1-x^2+1+x^2\right)}{\left(1-x^2\right)^2}\right]\)
= \(\frac{4 x}{\left(1-x^2\right)^2} \cos \left(\frac{1+x^2}{1-x^2}\right)\)

(iii) Let y = \(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 4

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 7.
(i) y = log \(\left(\frac{a+b \tan \frac{x}{2}}{a-b \tan \frac{x}{2}}\right)\), prove that \(\frac{d y}{d x}=\frac{a b}{a^2 \cos ^2 \frac{x}{2}-b^2 \sin ^2 \frac{x}{2}}\).
(ii) If 2y = x \(\sqrt{x^2-a^2}\) – a2 log (x + \(\sqrt{x^2-a^2}\)), prove that \(\frac{d y}{d x}=\sqrt{x^2-a^2}\).
(iii) If x = 2a sin-1 \(\sqrt{\frac{y}{2 a}}-\sqrt{2 a y-y^2}\), prove that \(\frac{d y}{d x}=\sqrt{\frac{2 a-y}{y}}\).
Solution:
(i) Given y = log \(\left(\frac{a+b \tan \frac{x}{2}}{a-b \tan \frac{x}{2}}\right)\)
= log (a + b tan \(\frac{x}{2}\)) – log (a – b tan \(\frac{x}{2}\))
Diff. both sides w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 5

(ii) Given 2y = x \(\sqrt{x^2-a^2}\) – a2 log (x + \(\sqrt{x^2-a^2}\))
Diff. both sides w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 6

(iii) Given x = 2a sin-1 \(\sqrt{\frac{y}{2 a}}-\sqrt{2 a y-y^2}\)
Diff. both sides w.r.t. y ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 7

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 8.
Differentiate the following functions w.r.t. x:
(i) sin-1 \(\left(\frac{a+b \cos x}{b+a \cos x}\right)\)
(ii) cot-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\)
(iii) tan-1 \(\sqrt{\frac{a-x}{a+x}}\)
Solution:
(i) Let y = sin-1 \(\left(\frac{a+b \cos x}{b+a \cos x}\right)\)
Diff. both sides w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 8

(ii) Let y = cot-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) ……….(1)
put x = tan θ
⇒ θ = tan-1 x
∴ from (1) ;
y = cot-1 \(\left(\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right)\)
= cot-1 \(\left(\frac{\sec \theta-1}{\tan \theta}\right)\)
⇒ y = cot-1 \(\left(\frac{1-\cos \theta}{\sin \theta}\right)\)
= cot-1 \(\left(\frac{2 \sin ^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)\)
⇒ y = cot-1 \(\left(\tan \frac{\theta}{2}\right)\)
= cot-1 (cot \(\left(\frac{\pi}{2}-\frac{\theta}{2}\right)\))
⇒ y = \(\frac{\pi}{2}-\frac{\theta}{2}\)
= \(\frac{\pi}{2}-\frac{1}{2} \tan ^{-1} x\)

(iii) Let y = tan-1 \(\sqrt{\frac{a-x}{a+x}}\) ………..(1)
put x = a cos θ
θ = cos-1 \(\frac{x}{a}\)
∴ from eqn. (1) ; we have
y = tan-1 \(\sqrt{\frac{a-a \cos \theta}{a+a \cos \theta}}\)
= tan-1 \(\sqrt{\frac{2 \sin ^2 \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}}\)
y = tan-1 (tan \(\frac{\theta}{2}\))
= \(\frac{\theta}{2}\)
= \(\frac{1}{2}\) cos-1 \(\frac{x}{a}\)
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}=-\frac{1}{2} \frac{1}{\sqrt{1-\frac{x^2}{a^2}}} \frac{1}{a}\)
= – \(\frac{1}{2 \sqrt{a^2-x^2}}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 9.
If y = 2 tan-1 \(\sqrt{\frac{x-a}{b-x}}\), a < x < b, prove that \(\left(\frac{d y}{d x}\right)^2+\frac{1}{(x-a)(x-b)}\) = 0.
Solution:
Given y = 2 tan-1 \(\sqrt{\frac{x-a}{b-x}}\)
put x = a cos2 θ + b sin2 θ ………..(1)
∴ x – a = a cos2 θ + b sin2 θ – a
= – a sin2 θ + b sin2 θ
⇒ x – a = (b – a) sin2 θ ………..(2)
and b – x = b – a cos2 θ – b sin2 θ
= b cos2 θ – a cos2 θ
= (b – a) cos2 θ ………..(3)
∴ y = 2 tan-1 \(\sqrt{\frac{(b-a) \sin ^2 \theta}{(b-a) \cos ^2 \theta}}\)
= 2 tan-1 (tan θ)
= 2θ
⇒ \(\frac{d y}{d x}=2 \frac{d \theta}{d x}\)
= \(\frac{2}{(b-a) \sin 2 \theta}\)
= \(\frac{1}{(b-a) \sin \theta \cos \theta}\) ………..(4)
[from (1) ;
\(\frac{d x}{d \theta}\) = 2a cos θ (- sin θ) + 2b sin θ cos θ = (b – a) sin 2θ]
On squaring both sides of eqn. (4) ; we have
\(\left(\frac{d y}{d x}\right)^2=\frac{1}{(b-a)^2 \sin ^2 \theta \cos ^2 \theta}\)
= \(\frac{1}{(b-a)^2 \frac{(x-a)}{b-a}\left(\frac{b-x}{b-a}\right)}\) [using (2) and (3)]
⇒ \(\left(\frac{d y}{d x}\right)^2=\frac{1}{(x-a)(b-x)}\)
⇒ \(\left(\frac{d y}{d x}\right)^2+\frac{1}{(x-a)(x-b)}\) = 0.

Question 10.
Differentiate the following functions w.r.t. x:
(i) tan-1 \(\left(\frac{\sqrt{x}(3-x)}{1-3 x}\right)\)
(ii) tan-1 \(\left(\frac{3 a^2 x-x^3}{a\left(a^2-3 x^2\right)}\right)\)
Solution:
(i) Let y = tan-1 \(\left(\frac{\sqrt{x}(3-x)}{1-3 x}\right)\)
put √x = tan θ
⇒ θ = tan-1 √x
∴ y = tan-1 \(\left(\frac{\tan \theta\left(3-\tan ^2 \theta\right)}{1-3 \tan ^2 \theta}\right)\)
= tan-1 (tan 3θ)
= 3θ
= 3 tan-1 √x
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}=\frac{3}{1+(\sqrt{x})^2} \frac{d}{d x} \sqrt{x}\)
= \(\left(\frac{3}{1+x}\right)\left(\frac{1}{2 \sqrt{x}}\right)\)
= \(\frac{3}{2 \sqrt{x}(1+x)}\)

(ii) Let y = tan-1 \(\left(\frac{3 a^2 x-x^3}{a\left(a^2-3 x^2\right)}\right)\)
put x = a tan θ
θ = tan-1 \(\frac{x}{a}\)
∴ y = tan-1 \(\left(\frac{3 a^3 \tan \theta-a^3 \tan ^3 \theta}{a^3-3 a^3 \tan ^2 \theta}\right)\)
= tan-1 \(\left(\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^3 \theta}\right)\)
= tan-1 (tan 3θ)
= 3θ
= 3 tan-1 \(\frac{x}{a}\)
Diff. both sides w.r.t. x ;
\(\frac{d y}{d x}=\frac{3}{1+\frac{x^2}{a^2}}\left(\frac{1}{a}\right)\)
= \(\frac{3 a}{a^2+x^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 11.
If tan y = \(\frac{2 t}{1-t^2}\) and sin x = \(\frac{2 t}{1+t^2}\), find \(\frac{d y}{d x}\). (NCERT Exampler)
Solution:
Given sin x = \(\frac{2 t}{1+t^2}\)
⇒ x = sin-1 \(\frac{2 t}{1+t^2}\) ………….(1)
and tan y = \(\frac{2 t}{1-t^2}\)
⇒ y = tan-1 \(\frac{2 t}{1-t^2}\) ………….(2)
putting t = tan θ
and t = tan Φ in eqn. (1) and (2) ; we get
x = sin-1 \(\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right)\)
and y = tan-1 \(\left(\frac{2 \tan \phi}{1-\tan ^2 \phi}\right)\)
⇒ x = sin-1 (sin 2θ)
and y = tan-1 (tan 2Φ)
⇒ x = 2θ
and y = 2Φ
⇒ x = 2 tan-1 t
⇒ \(\frac{d x}{d t}\) = \(\frac{2}{1+t^2}\)
and y = 2 tan-1 t
⇒ \(\frac{d y}{d t}=\frac{2}{1+t^2}\)
Thus, \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\) = 1.

Question 12.
If y = sin-1 \(\left(\frac{1}{\sqrt{1+x^2}}\right)\) + tan-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\), find \(\frac{d y}{d x}\).
Solution:
Given y = sin-1 \(\left(\frac{1}{\sqrt{1+x^2}}\right)\) + tan-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) ………..(1)
put x = tan θ
⇒ θ = tan-1 x
∴ from (1) ;

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 9

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 12 (old).
If y = at + \(\frac{1}{t}\) and x = (t + \(\frac{1}{t}\))a, a > 0, find \(\frac{d y}{d x}\). (NCERT)
Solution:
Given y = at + \(\frac{1}{t}\) …………(1)
and x = (t + \(\frac{1}{t}\))a …………(2)
Differentiate eqn. (1) and (2) w.r.t. ‘t’ ; we have
\(\frac{d y}{d t}\) = at + \(\frac{1}{t}\) log a . [1 – \(\frac{1}{t^2}\)]
and \(\frac{d x}{d t}\) = a \(\left(t+\frac{1}{t}\right)^{a-1}\left(1-\frac{1}{t^2}\right)\)
∴ \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{a^{\left(t+\frac{1}{t}\right)} \log a\left(1-\frac{1}{t^2}\right)}{a\left(t+\frac{1}{t}\right)^{a-1}\left(1-\frac{1}{t^2}\right)}\)
= \(\frac{a^{\left(t+\frac{1}{t}\right)} \log a}{a\left(t+\frac{1}{t}\right)^{a-1}}\).

Question 13.
If y \(\sqrt{1-x^2}\) + x \(\sqrt{1-y^2}\) = c, prove that \(\frac{d y}{d x}=-\sqrt{\frac{1-y^2}{1-x^2}}\).
Solution:
Given y \(\sqrt{1-x^2}\) + x \(\sqrt{1-y^2}\) = c ……….(1)
put x = sin θ i.e. θ = sin-1 x
and y = sin Φ i.e. Φ = sin-1 y
∴ from (1) ;
we have
sin Φ cos θ + sin θ cos Φ = c
⇒ sin (θ + Φ) = c
⇒ θ + Φ = sin-1 c
⇒ sin-1 x + sin-1 y = sin-1 c
Diff. both sides w.r.t. x ; we have
\(\frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-y^2}} \frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=-\sqrt{\frac{1-y^2}{1-x^2}}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 14.
Differentiate the following functions w.r.t. x :
(i) tan (xx)
(ii) (5x)3 cos 2x (NCERT)
(iii) (sin x)x + sin-1 √x
(iv) (x + \(\frac{1}{x}\))x + x(1 + \(\frac{1}{x}\)).
Solution:
(i) Let y = tan (xx)
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}\) = sec2 (xx) \(\frac{d}{d x}\) (xx)
= sec2 (xx) \(\frac{d}{d x}\) ex log x
= sec2 (xx) ex log x [x × \(\frac{1}{x}\) + log x – 1]
= xx sec2 (xx) (1 + log x)

(ii) Let y = (5x)3 cos 2x
Taking logarithm on both sides ; we have
log y = 3 cos 2x log 5x
Diff. both sides w.r.t. x ; we have
\(\frac{1}{y} \frac{d y}{d x}\) = 3 [cos 2x \(\frac{1}{5 x}\) . 5 + log 5x . (- 2 sin 2x)]
⇒ \(\frac{d y}{d x}\) = (5x)3 cos 2x [\(\frac{3 \cos 2 x}{x}\) – 6 sin 2x log 5x]

(iii) Let y = (x + \(\frac{1}{x}\))x + x(1 + \(\frac{1}{x}\))
⇒ y = u + v …………(1)
∴ \(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\) …………(2)
where u = (sin x)x
⇒ log u = x log sin x
diff. both sides w.r.t. x ; we have
\(\frac{1}{u} \frac{d u}{d x}\) = log sin x + \(\frac{x}{sin x}\) cos x
\(\frac{d u}{d x}\) = (sin x)x [log sin x + x cot x] ……….(3)
and v = sin-1 √x
⇒ \(\frac{d v}{d x}=\frac{1}{\sqrt{1-(\sqrt{x})^2}} \times \frac{1}{2 \sqrt{x}}\)
\(\frac{d v}{d x}=\frac{1}{2 \sqrt{x} \sqrt{1-x}}=\frac{1}{2 \sqrt{x-x^2}}\) ……….(4)
putting eqn. (3) and eqn. (4) in eqn. (2) ;
∴ \(\frac{d y}{d x}\) = (sin x)x [log sin x + x cot x] + \(\frac{1}{2 \sqrt{x-x^2}}\)

(iv) Let y = (x + \(\frac{1}{x}\))x + x(1 + \(\frac{1}{x}\))
⇒ y = u + v ……….(1)
where u = (x + \(\frac{1}{x}\))x
and v = x(1 + \(\frac{1}{x}\))
Diff. eqn. (1) both sides w.r.t. x ; we have
\(\frac{d y}{d u}=\frac{d u}{d x}+\frac{d v}{d x}\) …………(2)
Since u = (x + \(\frac{1}{x}\))x ;
Taking logarithm on both sides ; we have
log u = x log (x + \(\frac{1}{x}\)) ;
diff. both sides w.r.t. x,

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 10

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 14 (old).
(iii) (sin x – cos x)sin x – cos x, \(\frac{\pi}{4}\) < x < \(\frac{3 \pi}{4}\) (NCERT).
Solution:
Let y = (sin x – cos x)sin x – cos x, \(\frac{\pi}{4}\) < x < \(\frac{3 \pi}{4}\)
Taking logarithm on both sides ; we have
log y = (sin x – cos x) log (sin x – cos x)
On differentiating both sides ; we have
\(\frac{1}{y} \frac{d y}{d x}\) = \(\frac{(\sin x-\cos x)}{\sin x-\cos x}\) (cos x + sin x) + (cos x + sin x) log (sin x – cos x)
\(\frac{1}{y} \frac{d y}{d x}\) = (cos x + sin x) [1 + log (sin x – cos x)]
⇒ \(\frac{d y}{d x}\) = (sin x – cos x)sin x – cos x (cos x + sin x) [1 + log (sin x – cos x)]

Question 15.
(i) If xy – yx = ab, find \(\frac{d y}{d x}\).
(ii) If y = \((\cos x)^{(\cos x)^{(\cos x) \ldots \infty}}\), prove that \(\frac{d y}{d x}=-\frac{y^2 \tan x}{1-y \log (\cos x)}\). (NCERT Exampler)
Solution:
(i) Given xy – yx = ab
⇒ u – v = ab …………(1)
where u = xy ………..(2)
and v = yx …………..(3)
Diff. eqn. (1) both sides w.r.t. x ;
\(\frac{d u}{d x}-\frac{d v}{d x}\) = 0 ………..(4)
Taking logarithm on both sides of eqn. (2) ;
log u = log xy = y log x
Diff. both sides w.r.t. x ;
∴ \(\frac{1}{u} \frac{d u}{d x}=\frac{y}{x}+\log x \cdot \frac{d y}{d x}\)
⇒ \(\frac{d u}{d x}=x^y\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right]\) ………..(5)
Taking logarithm on both sides of eqn. (3) ;
log v = log yx = x log y
Diff. both sides w.r.t. x ; we have
\(\frac{1}{v} \frac{d v}{d x}=\frac{x}{y} \frac{d y}{d x}\) + log y
⇒ \(\frac{d v}{d x}\) = yx [\(\frac{x}{y} \frac{d y}{d x}\) + log y] ……….(6)
putting eqn. (5) and eqn. (6) in eqn. (4) ; we have
\(x^y\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]-y^x\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]\) = 0
⇒ (xy log x – xyx – 1) \(\frac{d y}{d x}\) = yx log y – yxy – 1
⇒ \(\frac{d y}{d x}=\frac{y^x \log y-y x^{y-1}}{x^y \log x-x y^{x-1}}\).

(ii) Given y = (cos x)y ;
Taking logarithm on both sides ; we have
log y = y log cos x ;
diff. both sides w.r.t. x, we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 11

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 16.
If \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\) = 6, prove that \(\frac{d y}{d x}=\frac{y}{x}\).
Solution:
Given \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\) = 6
⇒ x + y = 6 \(\sqrt{xy}\)
Taking logarithm on both sides ; we have
log (x + y) = log 6 + \(\frac{1}{2}\) (log x + log y)
Diff. both sides w.r.t. x ; we have
\(\frac{1}{x+y}\left[1+\frac{d y}{d x}\right]=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}\right)\)
⇒ \(\frac{d y}{d x}\left[\frac{1}{x+y}-\frac{1}{2 y}\right]=\frac{1}{2 x}-\frac{1}{x+y}\)
⇒ \(\frac{d y}{d x}\left(\frac{y-x}{2 y(x+y)}\right)=\frac{y-x}{2 x(x+y)}\)
⇒ \(\frac{d y}{d x}=\frac{y}{x}\).

Question 17.
Find the second derivative of the following functions:
(i) tan2 (3x – 2)
(ii) \(\frac{x^2+2 x-1}{x^2-3 x+2}\)
Solution:
(i) Let y = tan2 (3x – 2) ;
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}\) = 2 tan (3x – 2) sec2 (3x – 2) . 3
Again diff. both sides w.r.t. x : we have
\(\frac{d^2 y}{d x^2}\) = 6 [3 sec2 (3x – 2) sec2 (3x – 2) + 2 tan2 (3x – 2) sec2 (3x – 2) × 3]
= 18 sec4 (3x – 2) + 36 tan2 (3x – 2) sec2 (3x – 2)

(ii) Let y = \(\frac{x^2+2 x-1}{x^2-3 x+2}\)
= \(\frac{x^2+2 x-1}{(x-1)(x-2)}\)
= 1 – \(\frac{2}{x-1}+\frac{7}{x-2}\) ………..(1)
[by using partial fractions]
Let \(\frac{x^2+2 x-1}{x^2-3 x+2}=1+\frac{\mathrm{A}}{x-1}+\frac{\mathrm{B}}{x-2}\) ………….(2)
Multiply both sides of eqn. (2) ; we have
x2 + 2x – 1 = x2 – 3x + 2 + A (3x – 2) + B (x – 1)
putting x = 1 in eqn. (3) ; we have
2 = – A
⇒ A = – 2
putting x = 2 in eqn. (3) ; we have
7 = B
Diff. both sides of eqn. (1) w.r.t. x, we have
\(\frac{d y}{d x}=\frac{2}{(x-1)^2}-\frac{7}{(x-2)^2}\)
Again differentiating w.r.t. x, we have
\(\frac{d^2 y}{d x^2}=\frac{-4}{(x-1)^3}+\frac{14}{(x-2)^3}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 18.
If y = 3x sin 3x + cos 3x, prove that x \(\frac{d^2 y}{d x^2}\) + 9xy = 2 \(\frac{d y}{d x}\).
Solution:
Given y = 3x sin 3x + cos 3x ………..(1)
Diff. eqn. (1) w.r.t. x both sides ; we have
\(\frac{d y}{d x}\) = 3 [3x cos 3x + sin 3x] – 3 sin 3x
= 9 x cos 3x ……….(2)
again differentiating eqn. (2) w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = 9 [- 3x sin 3x + cos 3x]
⇒ x \(\frac{d^2 y}{d x^2}\) = – 27 x2 sin 3x + 9x cos 3x
⇒ x \(\frac{d^2 y}{d x^2}\) = – 9x [3x sin 3x + cos 3x] + 18x cos 3x
⇒ x \(\frac{d^2 y}{d x^2}\) = – 9 xy + 2 \(\frac{d y}{d x}\)
[using eqn. (1) and eqn. (2)]
⇒ x \(\frac{d^2 y}{d x^2}\) + 9xy = 2 \(\frac{d y}{d x}\)

Question 19.
If y = cos (3 cos-1 x), then prove that \(\frac{d^2 y}{d x^2}\) = 24x.
Solution:
Given y = cos (3 cos-1 x)
put cos-1 x = θ
⇒ x = cos θ
⇒ y = cos 3θ
= 4 cos3 θ – 3 cos θ
= 4x3 – 3x
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}\) = 12x2 – 3 ;
again differentiating w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = 24x.

Question 20.
If sin (x + y) = ky, prove that y2 + y (1 + y1)3 = 0.
Solution:
Given sin (x + y) = ky …………(1)
T.P. y2 + y (1 + y1)3 = 0
Diff. eqn. (1) both sides w.r.t. x, we have
cos (x + y) (1 + y1) = ky1 …………(2)
Differentiating eqn. (2) w.r.t. x ; we have
cos (x + y) y2 + (1 + y1) {- sin (x + y) (1 + y1)} = ky2
⇒ \(\) y2 – (1 + y1)2 ky = ky2
[using eqn. (1) and (2)]
⇒ y1y2 – (1 + y1)2 y = y2 (1 + y1)
⇒ y2 (y1 – 1 – y1) – (1 + y1)3 y = 0
⇒ y2 + y (1 + y1)3 = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 21.
If xy = sin x, prove that \(\frac{d^2 y}{d x^2}\) + \(\frac{2}{x} \frac{d y}{d x}\) + y = 0.
Solution:
Given xy = sin x ……….(1)
Diff. eqn. (1) both sides w.r.t. x, we have
x \(\frac{d y}{d x}\) + y . 1 = cos x ………(2)
Differentiating eqn. (2) w.r.t. x ; we have
x \(\frac{d^2 y}{d x^2}\) + \(\frac{d y}{d x}\) . 1 + \(\frac{d y}{d x}\) = – sin x
⇒ x \(\frac{d^2 y}{d x^2}\) + 2 \(\frac{d y}{d x}\) = – xy
On dividing both sides throughout by x, we have
\(\frac{d^2 y}{d x^2}\) + \(\frac{2}{x} \frac{d y}{d x}\) + y = 0.

Question 22.
If y = \(\frac{2}{\sqrt{a^2-b^2}}\) tan-1 \(\left(\sqrt{\frac{a \cdot b}{a+b}} \tan \frac{x}{2}\right)\), prove that \(\frac{d^2 y}{d x^2}=\frac{b \sin x}{(a+b \cos x)^2}\).
Solution:
Given y = \(\frac{2}{\sqrt{a^2-b^2}}\) tan-1 \(\left(\sqrt{\frac{a \cdot b}{a+b}} \tan \frac{x}{2}\right)\) ;
Diff. both sides w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 12

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 23.
If x = (a + bt) e– nt, prove that \(\frac{d^2 x}{d t^2}\) + 2n \(\frac{d x}{d t}\) + n2x = 0.
Solution:
Given x = (a + bt) e– nt ……….(1)
Diff. eqn. (1) both sides w.r.t. t ; we have
\(\frac{d x}{d t}\) = (a + bt) e– nt (- n) + e– nt b
⇒ \(\frac{d x}{d t}\) = – nx + be– nt ………..(2)
again differentiating eqn. (2) w.r.t. t, we have
\(\frac{d^2 x}{d t^2}\) = – n \(\frac{d x}{d t}\) + be– nt (- n)
⇒ \(\frac{d^2 x}{d t^2}\) = – n \(\frac{d x}{d t}\) – n [\(\frac{d x}{d t}\) + nx] [using eqn. (2)]
⇒ \(\frac{d^2 x}{d t^2}\) + 2n \(\frac{d x}{d t}\) + n2x = 0

Question 24.
If y = \(\frac{3 a t}{1+t}\) and x = \(\frac{2 a t^2}{1+t}\), find \(\frac{d^2 y}{d x^2}\).
Solution:
Given y = \(\frac{3 a t}{1+t}\) ………….(1)
and x = \(\frac{2 a t^2}{1+t}\) …………(2)
Differentiating eqn. (1) and eqn. (2) w.r.t. t, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test 13.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 25.
If x = sin t and y = sin 2t, prove that
(i) (1 – x2) (\(\frac{d y}{d x}\))2 = 4 (1 – y2)
(ii) (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) + 4y = 0.
Solution:
Given x = sin t ……….(1)
and y = sin 2t ………..(2)
diff. eqns. (1) and (2) ; w.r.t. t ; we have
\(\frac{d x}{d t}\) = cos t ;
\(\frac{d y}{d t}\) = 2 cos 2t
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 \cos 2 t}{\cos t}\) ………..(3)
⇒ \(\left(\frac{d y}{d x}\right)^2=4 \frac{\cos ^2 2 t}{\cos ^2 t}\)
= \(\frac{4\left(1-\sin ^2 2 t\right)}{1-\sin ^2 t}\)
= \(\frac{4\left(1-y^2\right)}{1-x^2}\)
[using (1) and (2)]
⇒ (1 – x2) (\(\frac{d y}{d x}\))2 = 4 (1 – y2) ………..(4)

(ii) Diff. eqn. (3) both sides w.r.t. x ;
\(\frac{d^2 y}{d x^2}=\frac{2[\cos t(-2 \sin 2 t)-\cos 2 t(-\sin t)]}{\cos ^2 t}\) × \(\frac{d t}{d x}\)
⇒ (1 – sin2 t) \(\frac{d^2 y}{d x^2}\) = [- 4 cos t sin 2t + 2 cos 2t sin t] \(\frac{1}{\cos t}\)
= – 4 sin 2t + 2 \(\frac{\cos 2 t}{\cos t}\) sin t
⇒ (1 – x2) \(\frac{d^2 y}{d x^2}\) = – 4y + x \(\frac{d y}{d x}\) [using (1) and (2)]
⇒ (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) + 4y = 0.

Question 26.
Verify Rolle’s theorem for the following functions and find point (or points) in the interval where derivative is zero :
f(x) = 2 cos 2 (x – \(\frac{\pi}{4}\)) in [0, π]
Solution:
Given f(x) = 2 cos 2 (x – \(\frac{\pi}{4}\))
= 2 cos (2x – \(\frac{\pi}{2}\))
= 2 cos {- (\(\frac{\pi}{2}\) – 2x)}
= 2 cos (\(\frac{\pi}{2}\) – 2x)
[∵ cos (- θ) = cos θ]
⇒ f(x) = 2 sin 2x ………..(1)
Since, sin 2x is continuous and differentiable everywhere.
∴ f(x) is continuous in [0, π] and f is derivable in (0, π).
also, f(0) = 2 × 0 = 0;
f(π) = 2 sin 2π
= 2 × 0 = 0
∴ f(0) = f(π)
Thus, all the three conditions of Rolle’s theorem are satisfied for function f in [0, π].
Then ∃ atleast one real number c ∈ (0, π)
s.t. f’ (c) = 0
Diff. eqn. (1) w.r.t. x; we have
f’(x) = 4 cos 2x
Now f’ (c) = 0
⇒ 4 cos 2c = 0
⇒ cos 2c = 0
⇒ 2c = (2n + 1) \(\frac{\pi}{2}\), ∀ n ∈ I
⇒ c = (2n + 1) \(\frac{\pi}{4}\), ∀ n ∈ I
∴ c = \(\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \ldots,-\frac{\pi}{4}, \ldots\)
But c ∈ (0, π)
∴ c = \(\frac{\pi}{4}\), \(\frac{3 \pi}{4}\)
Thus, ∃ teo real numbers \(\frac{\pi}{4}\) and \(\frac{3 \pi}{4}\)
s.t. f'(\(\frac{\pi}{4}\)) = 0 = f'(\(\frac{3 \pi}{4}\)).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Chapter Test

Question 27.
Verify Lagrange’s mean value theorem for the following function. Also find c of this theorem : f(x) = log x, 1 ≤ x ≤ 2e.
Solution:
Given f(x) = log x, 1 ≤ x ≤ 2e
Since log x is continuous in its domain.
∴ f(x) is continuous in [1, 2e].
Further f’ (x) = \(\frac{1}{x}\), which is defined ∀ x ∈ (1, 2e)
∴ f is derivable in (1, 2e).
Thus, both conditions of lagrange’s mean value theorem are satisfied for f in [1, 2e].
Then ∃ atleast one real number c ∈ (1, 2e) such that
f'(c) = \(\frac{f(2 e)-f(1)}{2 e-1}\) ………….(1)
Diff. eqn. (1) w.r.t. x ; we have
f'(x) = \(\frac{1}{x}\) ;
f(1) = log 1 = 0 ;
f(e) = log 2e
∴ from (2) ; we have
\(\frac{1}{c}=\frac{\log 2 e-0}{2 e-1}\)
⇒ c = \(\frac{2 e-1}{\log 2 e}\)
⇒ c = \(\frac{2 e-1}{\log 2+\log e}\)
= \(\frac{2 e-1}{1+\log 2}\) ∈ (1, 2e)
[∵ e = 2.7183 and log 2 = 0.3010]
[Since 2e – 1 < 2e
⇒ \(\frac{2 e-1}{1+\log 2}\) < \(\frac{2 e}{1+\log 2}\) < 2e and 2e – 1 > 2
⇒ \(\frac{2 e-1}{1+\log 2}\) > \(\frac{2}{1+\log 2}\) > 1]
Thus, ∃ a real number c = \(\frac{2 e-1}{1+\log 2}\) ∈ (1, 2e)
s.t. f'(c) = \(\frac{f(2 e)-f(1)}{2 e-1}\)
Thus, lagrange’s theorem is verified and c = \(\frac{2 e-1}{1+\log 2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Continuous practice using ML Aggarwal Class 12 ISC Solutions Chapter 5 Continuity and Differentiability Ex 5.14 can lead to a stronger grasp of mathematical concepts.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 1.
Examine the continuity the function f(x) = \(\left\{\begin{array}{cc}
|x| & , \quad x \leq 0 \\
x & , 0<x<1 \\ 2-x & , 1 \leq x \leq 2 \\ 3 x-5, & x>2
\end{array}\right.\) at each of the points 0, 1, 2.
Solution:
Continuity at x = 0:
L.H.L. = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) |x|
= \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) – x = 0

Continuity at x = 1:
\(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) x = 1
\(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 2 – x
= 2 – 1 = 1
also f(1) = 2 – 1 = 1
∴ \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = f(1)
∴ f is continuous at x = 1.

Continuity at x = 2:
L.H.L. = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) 2 – x
= 2 – 2
= 0
R.H.L. = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) 3x – 5
= 6 – 5 = 1
∴ \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) ≠ \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x)
Thus, f(x) is discontinuous at x = 2.

Question 2.
Determine the constant k so that the function f(x) = ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 1 may be continuous.
Solution:

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 2

Also f(2) = k
Now, the function f(x) is continuous at x = 2.
if \(\underset{x \rightarrow 2}{\mathrm{Lt}}\) f(2) = if \(\frac{1}{8}\) = k.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 3.
Examine for continuity and differentiability, each of the following functions:
(i) f(x) = \(\left\{\begin{array}{cc}
x \sin \frac{1}{x}, & x<0 \\ 0 & , x \geq 0 \end{array}\right.\) at x = 0 (ii) f(x) = \(\left\{\begin{array}{cc} |x| \sin \frac{1}{x}, & x>0 \\
0, & x \leq 0
\end{array}\right.\) at x = 0
(iii) f(x) = \(\left\{\begin{array}{cc}
(x-c)^2 \cos \frac{1}{x-c}, & x \neq c \\
0 & , x=c
\end{array}\right.\) at x = c.
Solution:
(i) Continuity at x = 0:
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(0) = 0
\(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) x sin \(\frac{1}{x}\)
Let g(x) = x
and h(x) = sin \(\frac{1}{x}\)
\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x = 0
and sin \(\frac{1}{x}\) is bounded in the deleted ngd of 0.
[∵ – 1 ≤ sin t ≤ 1 ∀ t ∈ R]
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) h(x) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x sin \(\frac{1}{x}\) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = 0
∴ \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = 0,
also f(0) = 0
Thus \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x0 = f(0)
Hence, f is continuous at x = 0.

Differentiability at x = 0:
Lf'(0) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) \(\frac{f(x)-f(0)}{x-0}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 3

∴ f(x) is not differentiable at x = 0.

(ii) Continuity at x = 0:
\(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) |x| sin \(\frac{1}{x}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) x sin \(\frac{1}{x}\)
Let g(x) = x and
h(x) = sin \(\frac{1}{x}\)
\(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) = \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x = 0
and sin \(\frac{1}{x}\) is boundede in the deleted ngd of 0.
[∵|sin t| ≤ 1 ∀ t ∈ R]
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) g(x) h(x) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) x sin \(\frac{1}{x}\) = 0
⇒ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) = 0
⇒ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = 0
\(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{-}}{\mathrm{Lt}}\) 0 = 0
and f(0) = 0
∴ \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) f(x) = f(0)
Thus f(x) is continuous at x = 0

Differentiability at x = 0:
Rf'(0) = \(\ {Lt}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}\)
= \({Lt}_{x \rightarrow 0^{+}} \frac{x \sin \frac{1}{x}-0}{x}\)
= \(\underset{x \rightarrow 0^{+}}{\mathrm{Lt}}\) sin \(\frac{1}{x}\), which does not exists.
[since sin \(\frac{1}{x}\) be a real number oscillating between – 1 and 1]
If x = \(\frac{1}{2 n \pi+\frac{\pi}{2}}\), n ∈ N, n → ∞ ⇒ x → 0
∴ sin \(\frac{1}{x}\) = sin (2nπ + \(\frac{\pi}{2}\))
= sin \(\frac{\pi}{2}\) = 1
If x = \(\frac{1}{2 n \pi-\frac{\pi}{2}}\), n ∈ N, n → ∞ ⇒ x → 0
∴ sin \(\frac{1}{x}\) = sin (2nπ – \(\frac{\pi}{2}\))
= sin (- \(\frac{\pi}{2}\))
= – 1
∴ Rf'(0) does not exists.
Thus f is not differentiable at x = 0.

(iii) Continuity at x = c:
Let g(x) = (x – c)2 ;
h(x) = cos \(\frac{1}{x-c}\)
\(\underset{x \rightarrow c}{\mathrm{Lt}}\) g(x) = \(\underset{x \rightarrow c}{\mathrm{Lt}}\) (x – c)2 = 0
and h(x) = cos \(\frac{1}{x-c}\) is bounded in the ddeleted ngd of c.
[∵ – 1 ≤ cos \(\frac{1}{x}\) ≤ 1 ∀ x ∈ R]
∴ \(\underset{x \rightarrow c}{\mathrm{Lt}}\) g(x) h(x) = 0
⇒ \(\underset{x \rightarrow c}{\mathrm{Lt}}\) (x – c)2 cos \(\frac{1}{x-c}\) = 0
⇒ \(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = 0 ;
also f(c) = 0
∴ \(\underset{x \rightarrow c}{\mathrm{Lt}}\) f(x) = f(c)
Thus f is continuous at x = c.

Differentiability at x = c:
Lf'(c) = \(\ {Lt}_{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}\)
= \(\mathrm{Lt}_{h \rightarrow 0^{+}} \frac{f(c-h)-f(c)}{c-h-c}\)
= \(\ {Lt}_{h \rightarrow 0^{+}} \frac{(c-h-c)^2 \cos \left(\frac{-1}{h}\right)-0}{-h}\)
[put x = c – h as x → c ⇒ h → 0+]
= \(\ {Lt}_{h \rightarrow 0^{+}} \frac{h^2 \cos \frac{1}{h}}{h}\)
= \(\underset{h \rightarrow 0^{+}}{\mathrm{Lt}}\) h cos \(\frac{1}{h}\) = 0
[Here g(h) = h
and \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) g(h) = \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) h = 0
and f(h) = cos \(\frac{1}{h}\) is bounded in the deleted ngd of 0.
∴ \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) g(h) f(h) = \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) h cos \(\frac{1}{h}\) = 0]
Rf'(c) = \(\ e{Lt}_{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}\)
= \(\ {Lt}_{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{c+h-c}\)
[put x = c + h as x → c+
⇒ h → 0+]
= \(\ {Lt}_{h \rightarrow 0^{+}} \frac{(c+h-c)^2 \cos \frac{1}{c+h-c}-0}{c+h-c}\)
= \(\ {Lt}_{h \rightarrow 0^{+}} \frac{h^2 \cos \frac{1}{h}-0}{h}\)
= \(\underset{h \rightarrow 0^{+}}{\mathrm{Lt}}\) h cos \(\frac{1}{h}\) = 0
∴ Lf'(c) = R f'(c)
Thus f(x) is also differentiable at x = c.
Hence f(x) is continuous as well as differentiable at x = c.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 4.
Prove that the derivative of an odd function is always an even function.
Solution:
Let f(x) be an odd function
∴ f(- x) = – f(x) …………….(1)
Diff. eqn. (1) both sides w.r.t. x, we have
f'(- x) \(\frac{d}{d x}\) (- x) = – \(\frac{d}{d x}\) f(x)
⇒ f'(- x) (- 1) = – f'(x)
⇒ f'(- x) = f'(x)
Thus f'(x) be an even function.
Hence, the deerivative of an add function is always an even function.

Question 5.
If 2 f(x) + 3 f(- x) = x2 + x + 1, find f'(1).
Solution:
Given 2 f(x) + 3 f(- x) = x2 + x + 1 ……………..(1)
Changing x to – x in eqn. (1) ; we have
2 f(- x) + 3 f(x) = x2 – x + 1 ………….(2)
Multiply eqn. (1) by 2 and eqn. (2) by 3 and subtracting ; we have
– 5 f(x) = 2x2 + 2x + 2 – 3x2 + 3x – 3
⇒ – 5 f(x) = – x2 + 5x – 1
⇒ f(x) = \(\frac{1}{5}\) [x2 – 5x + 1]
Diff. both sides w.r.t. x ; we have
f'(x) = \(\frac{1}{5}\) (2x – 5)
⇒ f'(1) = \(\frac{1}{5}\) (2 – 5)
= – \(\frac{3}{5}\)

Question 6.
Differentiate the following functions w.r.t. x :
(i) tan-1 \(\left(\frac{\sqrt{x}(3-x)}{1-3 x}\right)\)
(ii) tan-1 \(\left(\frac{\left(3 a^2 x-x^3\right)}{a\left(a^2-3 x^2\right)}\right)\)
Solution:
(i) Let y = tan-1 \(\left(\frac{\sqrt{x}(3-x)}{1-3 x}\right)\)
put √x = tan θ.
⇒ θ = tan-1 x
Thus from (1) ; we have
y = tan-1 \(\left\{\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\right\}\)
⇒ y = tan-1 (tan 3θ) = 3θ = tan-1 √x
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}=\frac{3}{1+(\sqrt{x})^2} \frac{d}{d x} \sqrt{x}\)
= \(\frac{3}{(1+x)} \frac{1}{2 \sqrt{x}}\)
= \(\frac{3}{2 \sqrt{x}(1+x)}\)

(ii) Let y = tan-1 \(\left(\frac{\left(3 a^2 x-x^3\right)}{a\left(a^2-3 x^2\right)}\right)\)
⇒ y = tan-1 \(\left\{\frac{\frac{3 x}{a}-\left(\frac{x}{a}\right)^3}{1-3\left(\frac{x}{a}\right)^2}\right\}\) ……(1)
put \(\frac{x}{a}\) = tan θ
⇒ θ = tan-1 \(\frac{x}{a}\)
∴ from (1) ;
y = tan-1 \(\left\{\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\right\}\)
⇒ y = tan-1 (tan 3θ)
⇒ y = 3θ
= 3 tan-1 \(\frac{x}{a}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=3 \cdot \frac{1}{1+\left(\frac{x}{a}\right)^2} \cdot \frac{1}{a}\)
= \(\frac{3 a}{a^2+x^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 7.
Differentiate tan-1 \(\left(\frac{\sqrt{1+a^2 x^2}-1}{a x}\right)\) w.r.t. tan-1 ax.
Solution:
Let y = tan-1 \(\left(\frac{\sqrt{1+a^2 x^2}-1}{a x}\right)\) ………..(1)
and z = tan-1 ax ………..(2)
So we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\).
put ax = tan θ
i.e. θ = tan-1 ax
∴ from (1) ;
y = tan-1 \(\left(\frac{\sec \theta-1}{\tan \theta}\right)\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 4

Question 8.
If y = \(\frac{\sin x}{1+\frac{\cos x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\ldots \infty}}}}\), prove that \(\frac{d y}{d x}=\frac{(1+y) \cos x+y \sin x}{1+2 y+\cos x-\sin x}\).
Solution:
Given y = \(\frac{\sin x}{1+\frac{\cos x}{1+y}}\)
⇒ y = \(\frac{(1+y) \sin x}{1+y+\cos x}\)
⇒ y + y2 + y cos x = (1 + y) sin x ……….(1)
Diff. eqn. (1) both sides w.r.t. x, we have
\(\frac{d y}{d x}\) + 2y \(\frac{d y}{d x}\) + cos x \(\frac{d y}{d x}\) + y (- sin x) = (1 + y) cos x + sin x \(\frac{d y}{d x}\)
⇒ (1 + 2y + cos x – sin x) \(\frac{d y}{d x}\) = (1 + y) cos x + y sin x
⇒ \(\frac{d y}{d x}=\frac{(1+y) \cos x+y \sin x}{1+2 y+\cos x-\sin x}\).

Question 9.
If y = (logcos x sin x) (logsin x cos x)-1, prove that \(\frac{d y}{d x}\)π/4 = – 8 log2 e.
Solution:

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 5

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 10.
Differentiate xx sin-1 √x w.r.t. x.
Solution:
Let y = xx sin-1 √x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = xx \(\frac{1}{\sqrt{1-(\sqrt{x})^2}} \frac{1}{2 \sqrt{x}}\) + sin-1 √x \(\frac{d}{d x}\) xx
= \(\frac{x^x}{\sqrt{1-x}} \frac{1}{2 \sqrt{x}}\) + sin-1 √x \(\frac{d}{d x}\) elog xx
= \(\frac{x^x}{2 \sqrt{x-x^2}}\) + sin-1 √x \(\frac{d}{d x}\) elog xx
= \(\frac{x^x}{2 \sqrt{x-x^2}}\) + sin-1 √x ex log x [x × \(\frac{1}{x}\) + log x . 1]
= \(\frac{x^x}{2 \sqrt{x-x^2}}\) + sin-1 √x elog xx [1 + log x]
= \(\frac{x^x}{2 \sqrt{x-x^2}}\) + sin-1 √x . xx (1 + log x).

Question 11.
If x = sin t and y = sin 2t, prove that
(i) (1 – x2) (\(\frac{d y}{d x}\))2 = 4 (1 – y2)
(ii) (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) + 4y = 0.
Solution:
(i) Given x = sin t ………..(1)
and y = sin 2t ………..(2)
Diff. eqn. (1) and (2) w.r.t. t ; we have
\(\frac{d x}{d t}\) = cos t ;
\(\frac{d y}{d t}\) = 2 cos 2t
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{2 \cos 2 t}{\cos t}\) ………..(3)
On squaring both sides of eqn. (3) ; we have
cos2 t (\(\frac{d y}{d x}\))2 = 4 cos2 2t
⇒ (1 – sin2 t) (\(\frac{d y}{d x}\))2 = 4 [1 – sin2 2t]
⇒ (1 – x2) (\(\frac{d y}{d x}\))2 = 4 [1 – y2] ………..(4)
Diff. eqn. (4) w.r.t. x ; we have
(1 – x2) 2 \(\frac{d y}{d x}\) \(\frac{d^2 y}{d x^2}\) + (\(\frac{d y}{d x}\))2 (- 2x) = – 8y \(\frac{d y}{d x}\)
Dividing throughout by 2 \(\frac{d y}{d x}\) ≠ 0 ; we get
(1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) = – 4y
⇒ (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) + 4y = 0.

Question 12.
If y1/m + y-1/m = 2x, prove that (x2 – 1) y2 + xy1 = m2y.
Solution:
Given y1/n + y-1/n = 2x
⇒ y1/n + \(\frac{1}{y^{1 / n}}\) = 2x
⇒ (y1/n)2 – 2xy1/n + 1 = 0 ; …………(1)
putting y1/n = t in eqn. (1) ; we get
⇒ t2 – 2xt + 1 = 0
⇒ t = \(\frac{2 x \pm \sqrt{4 x^2-4}}{2}\)
⇒ t = x ± \(\sqrt{x^2-1}\)

Case I:
When y1/n = x + \(\sqrt{x^2-1}\)
⇒ y = (x + \(\sqrt{x^2-1}\))n …………(2)
Diff. eqn. (2) w.r.t. x, we have
∴ y1 = n (x + \(\sqrt{x^2-1}\))n-1 \(\frac{d}{d x}\) [x + \(\sqrt{x^2-1}\)]
∴ y1 = n (x + \(\sqrt{x^2-1}\))n-1 \(\left[1+\frac{x}{\sqrt{x^2-1}}\right]\)
= \(\frac{n\left(x+\sqrt{x^2-1}\right)^{n-1}\left[x+\sqrt{x^2-1}\right]}{\sqrt{x^2-1}}\)
⇒ \(\sqrt{x^2-1}\) y1 = ny ………..(3) [using (2)]
Again diff. both sides of eqn. (3) w.r.t. x, we have
⇒ \(\sqrt{x^2-1}\) y2 + \(\frac{y_1}{\sqrt{x^2-1}}\) × x = ny1
⇒ (x2 – 1) y2 + xy1 = n2y [using (3)]

Case – II:
When y1/n = x – \(\sqrt{x^2-1}\)
⇒ y = [x – \(\sqrt{x^2-1}\)]n ………..(4)
Diff. eqn. (4) w.r.t. x; we have
∴ y1 = n (x – \(\sqrt{x^2-1}\))n-1 \(\left(1-\frac{x}{\sqrt{x^2-1}}\right)\)
⇒ \(\sqrt{x^2-1}\) y1 = – ny
Again diff. eqn. (5) w.r.t. x ; we have
⇒ \(\sqrt{x^2-1}\) y2 + xy1 = n2y [using eqn. (5)]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 13.
If x = et sin t and y = et cos t, then prove that (x + y)2 \(\frac{d^2 y}{d x^2}\) = 2 (x \(\frac{d y}{d x}\) – y).
Solution:
Given, x = et sin t …………(1)
y = et cos t ………..(2)
Diff. eqn. (1) and (2) both sides w.r.t. t ; we have
\(\frac{d x}{d t}\) = et cos t + et sin t
= et (cos t + sin t) ………….(3)
and \(\frac{d x}{d t}\) = et (- sin t) + cos t et
= et (cos t – sin t)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{e^t(\cos t-\sin t)}{e^t(\cos t+\sin t)}\)
= \(\frac{\cos t-\sin t}{\cos t+\sin t}\) ………….(4)
Diff. eqn. (4) both sides w.r.t. x, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 6

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 14.
Using Rolle’s theorem, show that between any two distinct real roots of the equation ax3 + bx2 + cx + d = 0, there is atleast one real root of the equation 3ax2+ 2bx + c = 0.
Solution:
Let f(x) = ax3 + bx2 + cx + d
Let α and β be the distinct real rootsof the equation
f(x) = 0 and let α < β.
∴ f (α) = 0 = (β)
Since f(x) be a polynomial function and hence f(x) be continuous and differentiable ∀ x ∈ R.
Thus f(x) is continuous in [α, β].
f(x) is derivable in (α, β).
Also f(α) = f(β)
Thus, all the three conditions of Rolle’s theorem are satisfied so 3 atleast one real number y ∈ (α, β)
s.t f’ (γ) = 0
Diff. eqn. (1) both sides w.r.t. x, we have
∴f’(x) = 3ax2 + 2bx + c
Now f’(y) = 0
⇒ 3ay2 + 2by + c = 0
⇒ γ be the root of the equation 3ax2 + 2bx + c = 0
Hence, between any two distinct real roots of the equation f(x)= 0, there is atleast one real root of the equation 3ax2 + 2bx + c = 0.

Question 15.
Discuss the applicability of Rolle’s theorem for the following functions in the indicated intervals :
(i) f(x) = \(\begin{cases}x+3, & x \leq 2 \\ 7-x, & x>2\end{cases}\) in [- 3, 7]
(ii) f(x) = \(\left\{\begin{array}{cc}
x^2+1, & 0 \leq x \leq 1 \\
3-x, & 1<x \leq 2
\end{array}\right.\) in [0, 2] (NCERT Exampler)
Solution:
(i) Given, f(x) = \(\begin{cases}x+3, & x \leq 2 \\ 7-x, & x>2\end{cases}\)
\(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) 7 – x
= 7 – 2 = 5
\(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) x + 3
= 2 + 3 = 5
also f(2) = 2 + 3 = 5
∴ \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x) = f(2)
Thus f(x) is continuous at x = 2.

Differentiability at x = 2:
Lf'(2) = \(\ {Lt}_{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}\)
= \(\ {Lt}_{x \rightarrow 2^{-}} \frac{(x+3)-(2+3)}{x-2}\)
= \(\ {Lt}_{x \rightarrow 2^{-}} \frac{x-2}{x-2}\) = 1

and Rf'(2) = \(\ {Lt}_{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}\)
= \(\ {Lt}_{x \rightarrow 2^{+}} \frac{7-x-(2+3)}{x-2}\)
= \(\ {Lt}_{x \rightarrow 2^{+}} \frac{2-x}{x-2}\) = – 1
∴ Lf'(2) ≠ Rf'(2)
Hence f(x) is not derivable at x = 2 ∈ (- 3, 7)
∴ f(x) is not derivable in (- 3, 7)
So condition (ii) of Rolle’s theorem is not satisfied.
Hence Rolle’s theorem is not applicable to the function f(x) in [- 3, 7]

(ii) Given f(x) = \(\left\{\begin{array}{cc}
x^2+1 ; & 0 \leq x \leq 1 \\
3-x & ; 1 \end{array}\right.\) in [0, 2]

Derivability at x = 1:
Rf'(1) = \(\ {Lt}_{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{3-x-(1+1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{3-x-2}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{+}} \frac{1-x}{x-1}\) = – 1

Lf'(1) = \(\ {Lt}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{\left(x^2+1\right)-(1+1)}{x-1}\)
= \(\ {Lt}_{x \rightarrow 1^{-}} \frac{x^2-1}{x-1}\)
= \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) x + 1
= 1 + 1 = 2
∴ Lf'(1) ≠ Rf'(1)
Thus, f(x) is not derivable at x I E (0, 2)
Hence fis not derivable in (0, 2)
So condition (ii) of RoBe’s theorem is not satisfied.
Hence Rolle’s theorem is not applicable to the function f(x) in [0, 2].

Question 16.
Discuss the applicability of Lagrange’s mean value theorem for the following functions in the indicated intervals.
(i) f(x) = \(\left\{\begin{array}{rll}
2+x^3 & , \text { if } & x \leq 1 \\
3 x & \text {, if } & x>1
\end{array}\right.\) on [- 1, 2]
(ii) f(x) = \(\begin{cases}\frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}\) in [- 1, 1]
(iii) f(x) = \(\left\{\begin{array}{cl}
3 x+2 & , x<2 \\ 14-3 x & , 2 \leq x \end{array}\right.\) in [- 2, 6]
(iv) f(x) = \(\left\{\begin{array}{cc} x \sin \frac{1}{x}, & x \neq 0 \\ 0 & , x=0 \end{array}\right.\) in [- 1, 1]
Solution:
(i) Given \(\left\{\begin{array}{rll} 2+x^3 & , \text { if } & x \leq 1 \\ 3 x & \text {, if } & x>1
\end{array}\right.\) on [- 1, 2]
Clearly f(x) is polynomial in x,
also \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) 3x
= \(\underset{h \rightarrow 0}{\mathrm{Lt}}\) 3 (1 + h) = 3
and \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) (2 + x3)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) [2 + (1 – h)3]
= 2 + (1 – 0)3 = 3
∴ \(\underset{x \rightarrow 1^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 1^{-}}{\mathrm{Lt}}\) f(x) = f(1)
i.e. f(x) is continuous at x = 1 and hence f(x) is continuous in [- 1, 2]

at x = 1:

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 7

∴ Lf’(1) = Rf’(1)
∴ f(x) is differentiable at x = 1
Hencef is derivable on (- 1, 2).
Further f(- 1) = 2 + (- 1)3 = 1
and f(2) = 3 × 2 = 6
Thus all the two conditions of L.M.V. theorem are satisfied
∴ ∃ atleast our real number c ∈ (- 1, 2).
s.t. f'(c) = \(\frac{f(b)-f(a)}{b-a}\)
Also f'(c) = \(\left\{\begin{array}{cc}
3 x^2, & x \leq 1 \\
3, & x>1
\end{array}\right.\)

When x ≤ 1 :
i.e. 3c2 = \(\frac{6-1}{2-(-1)}=\frac{5}{3}\)
c = \(\pm \frac{\sqrt{5}}{3}\)
but c = – \(\frac{\sqrt{5}}{3}\) ∈ (- 1, 2)

When x > 1 ; f'(c) = 3
i.e. 3 = \(\frac{6-1}{2-(-1)}\)
⇒ 3 = \(\frac{5}{3}\) which is impossible
Hence L.M.V. theorem is applicable and c = \(\frac{\sqrt{5}}{3}\).

(ii) as x → 0, \(\frac{1}{x}\) → ∞
as x → 0+, \(\frac{1}{x}\) → ∞
Thus f(x) = \(\frac{1}{x}\) oscillating between – ∞ to + ∞.
∴ \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) f(x) does not exist.
Thus f(x) is discontinuous at x = 0 ∈ [- 1, 1]
Hence lagrange mean value theorem is not applicable.

(iii) Given f(x) = \(\begin{cases}3 x+2 & ; \quad x<2 \\ 14-3 x & ; \quad 2 \leq x\end{cases}\) in [- 2, 6]
L.H. Limit = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) 3x + 2
= 6 + 2 = 8
R.H.Limit = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x)
= \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) (14 – 3x)
= 14 – 6 = 8
and f(2) = 8
∴ f is continuous at x = 2.

Differentiability at x = 2:

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14 8

∴ Lf'(2) ≠ Rf'(2)
Thus f(x) is not derivable at x = 2 ∈ (- 2, 6)
Hence f(x) is not derivable in (- 2, 6).
Thus lagrange’s mean value theorem is not applicable for f(x) in [- 2, 6].

(iv) f'(0) = \(\ {Lt}_{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}\)
= \(\ {Lt}_{x \rightarrow 0} \frac{x \sin \frac{1}{x}-0}{x-0}\)
= \(\underset{x \rightarrow 0}{\mathrm{Lt}}\) sin \(\frac{1}{x}\),
which does not exists
[Since sin \(\frac{1}{x}\) be a real number oscillating between – 1 and 1]
at x = \(\frac{1}{2 n \pi+\frac{\pi}{2}}\), n ∈ N, n → ∞
⇒ x → 0
∴ sin \(\frac{1}{x}\) = sin (2nπ + \(\frac{\pi}{2}\))
= siin \(\frac{\pi}{2}\) = 1
at x = \(\frac{1}{2 n \pi+\frac{\pi}{2}}\), n ∈ N, n is large
⇒ x → 0
∴ sin \(\frac{1}{x}\) = sin (2nπ – \(\frac{\pi}{2}\))
= sin \(\frac{-\pi}{2}\) = – 1
Thus f(x)is not derivable at x ∈ (- 1, 1)
Hencef(x) is not derivable in (- 1, 1).
Thus the condition (ii) of lagrange’s mean values is not satisfied.
Thus, the lagrange’s mean value theorem is not applicable for the function f(x) in [- 1, 1].

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.14

Question 17.
Using Lagrange’s Mean Value Theorem, show that | sin α – sin β | ≤ |α – β|.
Solution:
Two cases arise.

Case – I:
When α = β
∴ | sin α – sin β | = | sin α – sin α |
= |0| = 0
|α – β| = |α – α|
= |0| = 0
Thus, | sin α – sin β | = |α – β|

Case – II:
When α ≠ β, let α < β
Let f(x) = sin x ………….(1)
which is continuous and differentiable everywhere.
Thus f(x) is continuous in [α, β] and f(x) is derivable in (α, β).
So both the conditions of lagrange’s mean value theorem are satisfied.
Then ∃ atleast one real number c ∈ (α, β)
s.t. f'(c) = \(\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\) …………..(2)
Diff. eqn. (1) w.r.t. x ; we have
f'(x) = cos x
Now f'(c) = cos c ;
f(β) = sin β ;
f(α) = sin α
∴ from (2) ;
\(\frac{\sin \beta-\sin \alpha}{\beta-\alpha}\) = cos c
⇒ \(\frac{\sin \beta-\sin \alpha}{\beta-\alpha}\) = |cos c| ≤ 1
[∵ – 1 ≤ cos x ≤ 1 ∀ x ∈ R]
⇒ |sin α – sin β| ≤ |β – α|
= |- (α – β)|
= |α – β|
[∵ |- x| = |x| ∀ x ∈ R]
So, combining two cases, we have |sin α – sin β| ≤ |α – β|.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Effective ML Aggarwal Class 12 Solutions ISC Chapter 5 Continuity and Differentiability Ex 5.13 can help bridge the gap between theory and application.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Verify Lagrange’s mean value theorem for the following (1 to 4) functions in the given intervals. Also find ‘c’ of this theorem :

Question 1.
(i) f(x) = x2 in [2, 4] (NCERT)
(ii) f(x) = x2 – 4x – 3 in [1, 4] (NCERT)
(iii) f(x) = x + \(\frac {1}{x}\) in [1, 3]. [ISC 2019]
Solution:
(i) Given f(x) = x2 is continuous on [2, 4]
and derivable on (2, 4) as f(x) is polynomial in x which is continuous and differentiable everywhere.
∴ f’(x) = 2x
and f(2) = 4;
f (4) = 16
Thus both the conditions of L.M.V are satisfied.
∴ ∃ atleast one real number c ∈ (2, 4) s.t.
f'(c) = \(\frac{f(b)-f(a)}{b-a}\)
⇒ 2c = \(\frac{16-4}{4-2}\)
Hence L.M.V theorem is verified and c = 3.

(ii) Given f(x) = x2 – 4x – 3
∴ f(x) is continuous in [1, 4]
[∵ f(x) is polynomial in x]
also f’(x) = 2x – 4 exists ∀ x ∈ (1, 4)
∴ f(x) is derivable in (1, 4).
Now, f( 1) = – 6
and f(4) = 3
∴ Both the conditions of L.M.V. theorem are satiafied.
∴ ∃ atleast one real no. c ∈ (1, 4)
s.t. f'(c) = \(\frac{f(4)-f(1)}{4-1}\)
2c – 4 = \(\frac{-3-(-6)}{4-1}\) = 1
c = \(\frac{5}{2}\) ∈ (1, 4).
∴ L.M.V theorem is verified and c = \(\frac{5}{2}\).

(iii) Given f(x) = x + \(\frac {1}{x}\)
∴ f'(x) = 1 – \(\) which exists in [1, 3]
Thus, f(x) is continuous in [1, 3] and derivable in (1, 3)
Now f(1) = 1 + \(\frac{1}{1}\) = 2 ;
f(3) = 3 + \(\frac{1}{3}\)
= \(\frac{10}{3}\)
Therefore both conditions of Lagrange’s mean value theorem are satisfied so ∃ atleast one real number c ∈ (1, 3) such that
\(\frac{f(3)-f(1)}{3-1}\) = f'(c)
⇒ \(\frac{\frac{10}{3}-2}{2}=1-\frac{1}{c^2}\)
⇒ \(\frac{2}{3}=1-\frac{1}{c^2}\)
⇒ \(\frac{1}{c^2}=1-\frac{2}{3}=\frac{1}{3}\)
⇒ c2 = 3
⇒ c = ± √3
But c ∈ (1, 3)
∴ c = √3 ∈ (1, 3)
Thus ∃ c = √3 ∈ (1, 3) s.t.
f'(c) = \(\frac{f(3)-f(c)}{3-1}\)
Hence, Lagrange’s mean value theorem is verified.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 1 (old).
(iii) f(x) = x2 – 2x + 4 on [1, 5]
Solution:
Given f(x) = x2 – 2x + 4
since polynomial function is everywhere continuous and differentiable.
Thus f (x) is continuous on [1, 5] and differentiable on (1, 5).
So both conditions of L.M.V theorem are satisfied.
So ∃ atleast one real number c ∈ (1, 5) such that
f'(c) = \(\frac{f(5)-f(1)}{5-1}\) ……….(1)
since f(x) = x2 – 2x + 4
∴ f’(x) = 2x – 2
f(1) = 1 – 2 + 4 = 3 ;
f(5) = 25 – 10 + 4 = 19
∴ from (1) ;
2c – 2 = \(\frac{19-3}{4}\)
= \(\frac{16}{4}\) = 4
Thus c = 3 ∈ (1, 5) s.t.
f’ (c) = \(\frac{f(5)-f(1)}{5-1}\)
Thus, L.M.V Theorem is verified.

Question 2.
(i) f(x) = x3 – 2x2 – x + 3 on [0, 1] (NCERT Exampler)
(ii) f(x) = (x – 4) (x – 6) (x – 8) on [4, 8].
Solution:
(i) Given f(x) = x3 – 2x2 – x + 3 in [0, 1]
Since f(x) is polynomial in x.
∴ f(x) is continuous in [0, 1] and derivable in (0, 1).
Now f'(x) = 3x2 – 4x – 1
and f'(0) = 3
and f(1) = 1 – 2 – 1 + 3 = 1
∴ Both the conditions of L.M.V. theorem are satisfied.
∴ ∃ atleast one real number c ∈ (0, 1) s.t.
f'(c) = \(\frac{f(b)-f(a)}{b-a}\)
i.e. 3c2 – 4c – 1 = \(\frac{1-3}{1-0}\)
= – 2
⇒ 3c2 – 4c + 1 = 0
⇒ c = 1, \(\frac{1}{3}\)
but c = 1 ∉ (0, 1)
∴ c = \(\frac{1}{3}\) ∈ (0, 1)
Hence L.M.V. theorem is applicable and c = \(\frac{1}{3}\).

(ii) Given f(x) = (x – 4) (x – 6) (x – 8) …………..(1)
Clcarly f(x) be a polynomial function hence continuous and differentiable eveiy here.
∴ f(x) is continuous in [4, 8] and derivable in (4, 8).
Thus, both conditions of Lagrange’s mean value Theorem are satisfied.
So ∃ exists at least one real number c ∈ (4, 8)
s.t f'(c) = \(\frac{f(8)-f(4)}{8-4}\) …………(2)
Duff. (1) both sides w.r.t. x, we have
Since f(x) = x3 – 18x2 + 104x – 192
f’(x) = 3x2 – 36x + 104
also, f(8) = 0; f(4) = 0
∴ from (2) ;
3c2 – 36c + 104 = \(\frac{0-0}{4}\) = 0
⇒ c = \(\frac{36 \pm \sqrt{1296-1248}}{6}\)
= \(\frac{36 \pm \sqrt{48}}{6}\)
⇒ c = \(\frac{36 \pm 4 \sqrt{3}}{6}\)
= 6 ± \(\frac{2}{3}\) √3.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 3.
(i) f(x) = sin x in [0, \(\frac{\pi}{2}\)]
(ii) f(x) = x – 2 sin x in [- π, π]
Solution:
(i) Given f(x) = sin x …………….. (1)
Clearly f (x) be continuous and differentiable in its domain.
∴ f be continuous in [0, \(\frac{\pi}{2}\)] and derivable in (o, \(\frac{\pi}{2}\)).
Thus both conditions of Lagrange’s mean value theorem are satisfied for function f in [0, \(\frac{\pi}{2}\)]
Then ∃ atleast one real number c ∈ (0, \(\frac{\pi}{2}\))
s.t. f'(c) = \(\frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0}\) ………..(2)
Hence f'(x) = cos x ;
f(\(\frac{\pi}{2}\)) = 1 ;
f(0) = 0
∴ from (2) ;
cos c = \(\frac{1-0}{\frac{\pi}{2}-0}=\frac{2}{\pi}\)
⇒ c = cos-1 \(\left(\frac{2}{\pi}\right)\)
So ∃ a real number c = cos-1 \(\frac{2}{\pi}\) ∈ (0, \(\frac{\pi}{2}\))
s.t. f'(c) = \(\frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0}\)
Hence lagrange’s mean value Theorem is verified
and c = cos-1 \(\left(\frac{2}{\pi}\right)\)
[When 0 < c < \(\frac{\pi}{2}\)
⇒ 0 < cos c < 1
⇒ 0 < \(\frac{2}{\pi}\) < 1, which is true]

(ii) Given f(x) = x – 2 sin x ……………(1)
Clearly polynomial function and trigonometric function are continuous and derivable everywhere.
Thus f(x) is continuous in [- π, π] and derivable on (- π, π).
So both conditions of lagrange’s mean value are satisfied.
So ∃ atleast one real number e E (- π, π).
s.t. f'(c) = \(\frac{f(\pi)-f(-\pi)}{\pi-(-\pi)}\) ……….(2)
Diff. w.r.t. x ; we get
f'(x) = 1 – 2 cos x ;
f(π) = π – 2 sin π
= π – 0 = π
f(- π) = – π – 2 sin (- π) = – π
∴ from (2) ;
1 – 2 cos c = \(\frac{\pi-(-\pi)}{\pi-(-\pi)}\) = 1
⇒ – 2 cos c = 0
⇒ cos c = 0
⇒ c = (2n + 1) \(\frac{\pi}{2}\) ∀ n ∈ I
But c ∈ (- π, π)
∴ c = \(\frac{\pi}{2}\), – \(\frac{\pi}{2}\)
Thus ∃ two real numbers \(\frac{\pi}{2}\) and – \(\frac{\pi}{2}\)
s.t. f'(\(\frac{\pi}{2}\)) = \(\frac{f(\pi)-f(-\pi)}{\pi-(-\pi)}\)
and f'(- \(\frac{\pi}{2}\)) = \(\frac{f(\pi)-f(-\pi)}{\pi-(-\pi)}\)
∴ Lagrange mean value theorem is verified and c = ± \(\frac{\pi}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 4.
(i) f(x) = 2 sin x + sin 2x in [0, π]
(ii) f(x) = sin x – sin 2x on [0, π]
Solution:
(i) Given f(x) = 2 sin x + sin 2x
Since every trigonometric function is continuous and differentiable in its domain.
The sum of two continuous and differentiable functions ¡s continuous and differentiable.
(i) f(x) is continuous in [0, π]
(ii) f(x) is duff. in (0, π)
Thus both conditions of Lagrange’s mean value theorem are satisfied
so ∃ atleast one real no. c ∈ (0, π)
s.t \(\frac{f(\pi)-f(0)}{\pi-0}\) = f’(c) ………….(1)
Here f(π) = 2 sin π + sin 2π = 0
and f(0) = 0 + 0 = 0
and f’(x) = 2 cos x + 2 cos 2x
∴ from (1) ;
\(\frac{0}{\pi}\) = 2 (cos c + cos 2c)
⇒ cos 2c + cos c = 0
⇒ 2 cos \(\frac{3 c}{2}\) cos \(\frac{c}{2}\) = 0
⇒ cos \(\frac{3 c}{2}\) = 0 or
cos \(\frac{c}{2}\) = 0
⇒ \(\frac{3 c}{2}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots\)
or \(\frac{c}{2}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots\)
⇒ c = \(\frac{\pi}{3}, \pi, \frac{5 \pi}{3}, \ldots\)
or c = π, 3π, 5π, ……………
But c ∈ (0, π)
∴ c = \(\frac{\pi}{3}\)
Thus there exists atleast one c = \(\frac{\pi}{3}\) ∈ (0, π)
s.t. f'(c) = \(\frac{f(\pi)-f(0)}{\pi-0}\)

(ii) f(x) = sin x – sin 2x on [0, π]
Since sine function is continuous and derivable everywhere
∴ f is continuous in [0, 2π] and derivable in (0, 2π)
∴ Both the conditions of L.M.V are satisfied.
∴ ∃ atleast one real no c ∈ (0, 2π) s.t.
f'(c) = \(\frac{f(b)-f(a)}{b-a}\)
Now f’(c) = cos x – 2 cos 2x ;
f(x) = 0 ;
f(2π) = 0
i.e. cos c – 2 cos 2c = \(\frac{f(2 \pi)-f(0)}{2 \pi-0}\)
i.e. cos c – 2 cos 2c = \(\frac{0-0}{2 \pi}\) = 0
⇒ cos c – 2 cos 2c = 0
⇒ cos c – 2 (2 cos2 c – 1) = 0
⇒ 4 cos2 c – cos c – 2 = 0
∴ cos c = \(\frac{1 \pm \sqrt{33}}{8}\)
∴ c = cos-1 \(\left(\frac{1 \pm \sqrt{33}}{8}\right)\) ∈ [0, 2π]
[Since 0 < c < 2π
⇒ – 1 < cos c < 1]
Thus L.M.V. is applicable and
c = cos-1 \(\left(\frac{1 \pm \sqrt{33}}{8}\right)\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 5.
(i) f(x) = px2 + qx + r, p ≠ 0, on [0, 1]
(ii) f(x) = x on [a, b]
(iii) f(x) = (x – 1)2/3 on [1, 2].
Solution:
(i) Given f(x) = px2 + qx + r, p ≠ 0
Sincef(x) be a polynomial function. So it
is continuous and derivable everywhere.
Thus f(x) is continuous in [0, 1] and derivable in (0, 1).
Therefore, both conditions of lagrange’s mean value Theorem are satisfied.
So ∃ atleast one real number c ∈ (0, 1)
s.t. f'(c) = \(\frac{f(1)-f(0)}{1-0}\) ………..(2)
Diff. (1) w.r.t. x, we have
f'(x) = 2px + q ;
f(1) = p + q + r ;
f(0) = r
∴ from (2) ; we have
2pc + q = \(\frac{p+q+r-r}{1}\)
= p + q
⇒ 2pc = p
⇒ c = \(\frac{1}{2}\) ∈ (0, 1) [∵ p ≠ 0]
Thus, ∃ a real number c = \(\frac{1}{2}\) ∈ (0, 1)
such that f'(\(\frac{1}{2}\)) = \(\frac{f(1)-f(0)}{1-0}\)
Hence lagrange’s mean value theorem is verified and c = \(\frac{1}{2}\) .

(ii) Given f(x) = x on [a, b]
Clearly f(x) is polynomial in x.
∴ f is continuous n [a, b] and derivable in (a, b)
s.t. f'(c) = \(\frac{f(b)-f(a)}{b-a}\)
⇒ 1 = \(\frac{b-a}{b-a}\)
⇒ 1 = 1 which is true.
Hence L.M.V. is applicable and ∃ one real number c ∈ (a, b) s.t.
f(c) = \(\frac{f(b)-f(a)}{b-a}\)

(iii) f(x) = (x – 1)2/3
∴ f'(x) = \(\frac{2}{3(x-1)^{1 / 3}}\)
which does not exist at x = 1 and 1 ∉ (1, 2)
∴ f is derivable in (1, 2) and hence continuous in [1, 2]
also f(1) = 0
and f(2) = 1
∴ Both the conditions of L.M.V. theorem are satisfied.
∴ ∃ atleast one real number c ∈ (1, 2)
s.t. f'(c) = \(\frac{f(2)-f(1)}{2-1}\)
\(\frac{2}{3(c-1)^{1 / 3}}=\frac{1-0}{1}\)
= 1
⇒ (c – 1)2/3 = \(\frac{2}{3}\)
⇒ c – 1 = \(\frac{8}{27}\)
⇒ c = \(\frac{35}{27}\) ∈ (1, 2)
Thus L.M.V. theorem ia applicable and c = \(\frac{35}{27}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 6.
Show that the function f(x) = x2 – 6x + 1 on [1, 3] satisfies Lagrange’s mean value theorem. Also find the coordinates of a point at which the tangent to the curve represented by the above function is parallel to the chord joining A (1, – 4) and B (3, – 8). (ISC 2004)
(ii) Use Lagrange’s mean valuc theorem to deterniine a point P on the curve y = \(\sqrt{x-2}\) defined in the interval [2, 3] where the tangent ¡s parallel to the chord joining the end points on the curve. (ISC 2008)
Solution:
(i) Given y = f(x)
= x2 – 6x + 1
Here we discuss the applicability of L.M.V theorem in [1, 3]
Since f(x) is polynomial in x
∴ it ¡s continuous in [1, 3]
also, f’ (x) = 2x – 6 which is exists ∀ x ∈ (1, 3)
∴ f(x) is derivable in (1, 3)
Now,
f(1) = 1- 6 + 1 = – 4
and f(3) = 9 – 18 + 1 = – 8
Thus all the conditions of L.M.V theorem are satisfied
∴ ∃ atleast one real number c ∈ (1, 3)
s.t. f'(c) = \(\frac{f(3)-f(1)}{3-1}\)
⇒ 2c – 6 = \(\frac{-8-(-4)}{2}\)
= – 2
⇒ 2c = 4
⇒ c = 2 ∈ (1, 3)
i.e.when x = 2
then y = 4 – 12 + 1 = – 7
Hence the required point is (2, – 7).
Thus, there exists a point (2, – 7) on the given curve y = – 6x + 1 where the tangent ¡s parallel to the chord joining the points (1, – 4) and (3, – 8).

(ii) Given y = f(x) = \(\sqrt{x-2}\) ………….(1)
Here we use the lagrange’s mean value theorem for [2, 3]
∴ f'(x) = \(\frac{1}{2 \sqrt{x-2}}\)
and f(2) = 0
and f(3) = 1
Clearly f(x) exists ∀ x ∈ (2, 3)
i.e. f(x) is desirable in (2, 3) and hence continuous in [2, 3].
∴ by L.M.V theorem ∃ atleast one real number x ∈ (2, 3).
s.t. f'(x) = \(\frac{f(3)-f(2)}{3-2}\)
⇒ \(\frac{1}{2 \sqrt{x-2}}=\frac{1-0}{1}\) = 1
⇒ 2 \(\sqrt{x-2}\) = 1
⇒ (x- 2) = \(\frac{1}{4}\)
⇒ x = \(\frac{9}{4}\) ∈ (2, 3)
∴ From (1) ;
y = \(\sqrt{\frac{9}{4}-2}=\frac{1}{2}\)
Thus, ∃ a point on the given curve where the tangent is parallel to the chord joining the points on the curve.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.13

Question 7.
What can you say about the applicability of Lagrange’s mean value theorem for the following functions in the indicated intervals ?
(i) f(x) = x1/3 in [- 1, 2]
(ii) f(x) = |x| in [- 2, 3]
(iii) f(x) = 3 – (2 – x)2/3 in [0, 3]
Solution:
(i) Given f(x) = x1/3
∴ f’(x) = \(\frac{1}{3} \frac{1}{x^{2 / 3}}\) does not exists at x = 0 ∈ (- 1, 1)
:. f(x) is not derivable at (- 1, 1)
Hence L.M.V theorem is not applicable.

(ii) Given f(x) = |x|
Clearly f(x) be continuous at x = 0
∴ f be continuous in [- 2, 3].
Thus, derivative of f(x) does not exists at x = 0 ∈ (- 2, 3).
Hence f(x) is not derivable on (- 2, 3).
Hence condition (ii) of lagrange’s mean value is not satisfied byf in [- 2, 3]
Thus, lagrange mean value theorem is not applicable to function fin [- 2, 3].

(ii) Given f(x) = 3 – (2 – x)2/3 ; x ∈ [0, 3]
∴ f'(x) = – \(\frac{2}{3}\) (2 – x)-1/3 (- 1)
= \(\frac{2}{3(2-x)^{1 / 3}}\), x ≠ 2
Thus, deerivative of f(x) does not exist at x = 2 ∈ (0, 3)
∴ f is not derivable at x = 2 ∈ (0, 3)
Thus f(x) is not derivable in (0, 3).
Hence lagrange’s mean value theorem is not applicable to function f in [0, 3].

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Students can cross-reference their work with ML Aggarwal Class 12 Solutions Chapter 5 Continuity and Differentiability Ex 5.12 to ensure accuracy.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Verify Rolle’s theorem for the following (1 to 5) functions and find point (or points) in the interval where derivative is zero :

Question 1.
(i) f(x) = x2 – 5x + 6 in [1, 4]
(ii) = x2 + 2x – 8, x ∈ [- 4, 2]
(iii) f(x) = x3 – 3x in [- √3, 0] (NCERT)
Solution:
(i) Given f(x) = x2 – 5x + 6 …………(1)
Since f(x) be a polynomial function and hence continuous everywhere and
∴ f(x) be continuous in [1, 4].
Also f(x) being a polynomial function so it is differentiable everywhere.
∴ f(x) is derivable in (1, 4).
Also, f(1) = 12 – 5 + 6 = 2 ;
f(4) = 16 – 20 + 6 = 2
f(1) = f(4)
Thus, all the three conditions of Rolle’s Theorem are satisfied.
So ∃ atleast one real number
c ∈ (1, 4) s.t f’(c) = 0
Diff. (1) w.r.t. x, we have
f’(x) = 2x – 5
Now f'(c) = 0
⇒ 2c – 5 = 0.
⇒ c = \(\frac{5}{2}\) ∈ (1, 4)
So there exists \(\frac{5}{2}\) ∈ (1, 4) s.t. f'(\(\frac{5}{2}\)) = 0
Hence Rolle’s theorem is verified and c = \(\frac{5}{2}\).

(ii) Given, f(x) = x2 + 2x – 8.
Since f(x) is polynomial in x so it is continuous in [- 4, 2]
also f’(x) = 2x + 2 exists ∀ x ∈ (- 4, 2)
∴ f is derivable in (- 4, 2).
also, f(- 4) = 16 – 8 – 8 = 0
and f(2) = 4 + 4 – 8 = 0
∴ f (- 4) = f(2)
Thus all the three conditions of Roile’s theorem are satisfied.
∴ ∃ one real number c ∈ (- 4, 2) s.t.f’ (c) = 0
i.e. 2c + 2 = 0
⇒ c = – 1 ∈ (- 4, 2)
Hence Rolle’s theorem is verified.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

(iii) Given f(x) = x3 – 3x ………( 1)
Clearly f(x) be a polynomial in x.
∴ f (x) be contriuous in [- √3, 0].
Also f(x) be derivable in (- √3, 0).
Since f’(x) = 3x2 – 3 which exists in (- √3, 0).
f(- √3) = (- √3)3 – 3 (- √3)
= – 3√3 + 3√3 = 0
f(0) = 0
Thus, f(- √3) = f(0)
Thus, all the three conditions of Rolle’s theorem are satisfied.
So ∃ atleast one real number c ∈ (- √3, 0) s.t. f’(c) = 0
Diff. eqn. (1) both sides w.r.t. x, we have
f’(x) = 3x2 – 3
Now f’(c) = 0
⇒ 3c2– 3 = 0
⇒ c = ± 1
Clearly c = 1 ∉ (- √3, 0)
So there exists c = – 1 ∈ (- √3, 0)
s.t. f’(c) = 0
Hence Roll&s theorem is verified and c = – 1.

Question 1 (old).
(ii) f(x) = x2 + 2 on [- 2, 2] (NCERT)
Solution:
We have f(x) = x2 + 2
Since f(x) is polynormal in x
∴ it is continuous in [- 2, 2]
also f'(x) = 2x exists ∀ x ∈ (2, 2)
∴ f is derivable in (- 2, 2).
also f(2) = 22 + 2 = 6
and f(- 2) = (- 2)2 + 2 = 6
∴ f(2) = f(- 2)
Hence all the conditions of Rolle’s theorem are satisfied
∴ ∃ atleast one number c ∈ (- 2, 2) s.t. f'(c) = 0
i.e. 2c = 0
⇒ c = 0 ∈ (- 2, 2)
Hence Rolle’s theorem is verified.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 2.
(i) f(x) = x3 + 3x2 – 24x – 80 in [- 4, 5]
(ii) f(x) = x (x – 1)2 in O, 1 (NCERT Excmplar)
(iii) f(x) = (x – 1) (x – 2) (x – 3) in [1, 3]
(iv) f(x) = \(\sqrt{4-x^2}\) in [- 2, 2] (NCERT Exemplar)
Solution:
(i) Given f (x) = x3 + 3x2 – 24x – 80 in [- 4, 5]
Since f(x) is polynomial in x
∴ Continuous everywhere and differentiable.
Hence f is continuous in [- 4, 5] and derivable in (- 4, 5).
Also, f(- 4) = – 64 – 48 + 96 – 80 = 0
and f(5) = 125 + 75 – 120 – 80 = 0
∴ All the three conditions of rolle’s theorem are satisfied.
∴ ∃ atleast one real no. c ∈ (- 4, 5) s.t. f’(c) = 0
i.e. 3c2 + 6c – 24 = 0
⇒ c2 + 2c – 8 = 0
i.e. c = \(\frac{-2 \pm 6}{2}\)
= 2, – 4
but c = – 4 ∉ (- 4, 5)
∴ c = 2 ∈ (- 4, 5)
Hence Rolle’s theorem is verified and e 2.

(ii) Given f(x) = x (x – 1)2 on [0, 1]
and f(x) = x (x2 – 2x + 1)
Since f(x) ¡s polynomial in x
∴ continuous in [0, 1] and derivable in (0, 1) as f’(x) = 3x2 – 4x + 1 exists ∀ x ∈ (0, 1)
also, f(0) = 0 = f(1)
∴ all the three conditions of RoBe’s theorem are satisfied.
∴ ∃ atleast one real number c ∈ (0, 1) s.t. f’(c) = 0
i.e. 3c2 – 4c + 1 = 0
⇒ c = 1, \(\frac{1}{3}\)
but c = 1 ∉ (0, 1)
∴ c = \(\frac{1}{3}\) ∈ (0, 1)
Hence Rolle’s theorem is verified and c = \(\frac{1}{3}\).

(iii) Given f(x) = (x- 1) (x – 2) (x -3)
= (x – 1) (x2 – 5x + 6)
= (x3 – 6x2 + 11x – 6)
f(x) = x3 – 6x2 + 11x – 6
Since f(x) is polynomial in x
∴ it is continuous and derivable everywhere.
∴ f(x) is continuous in [1, 3] and derivable in (1, 3)
Also f(1) = 0 = f(3)
All the three conditions of Rolle’s theorem are satisfied.
∴∃ atleast one real number c ∈ (1, 3) s.t. f’(c) = 0
i.e. 3c2 – 12c + 11 = 0
⇒ c = \(\frac{12 \pm \sqrt{12}}{6} \)
= \(\frac{6 \pm \sqrt{3}}{3}\)
= 2 + \(\frac{1}{\sqrt{3}}\), 2 – \(\frac{1}{\sqrt{3}}\)
∴ c = \(\frac{6 \pm \sqrt{3}}{3}\) ∈ (1, 3)
Hence there are more than one c ∈ (1, 3) s.t.f’ (c) = 0.

(iv) Given f(x) = \(\sqrt{4-x^2}\) …………..(1)
Clearly DF = [- 2, 2].
So f(x) is clearly continuous in its domain i.e. [- 2, 2]
Also,f’ (x) = \(\frac{1}{2 \sqrt{4-x^2}}\) (- 2x)
= \(\frac{-x}{\sqrt{4-x^2}}\)
Clearly f’ (x) exists in (- 2, 2).
So f(x) is clearly derivable in (- 2, 2).
Also f(- 2) – 0 = F (2)
So all the three conditions of Rolle’s theorem are satisfied.
So 3 atleast one real number c ∈ (- 2, 2) s.t f’ (C) = 0
Now, f’ (c) = 0
\(\frac{-c}{\sqrt{4-c^2}}\) = 0
c = 0 ∈ (- 2, 2)
So there exists a real number c ∈ (- 2, 2) s.t f’(c) = 0
Hence Rolle’s Theorem verified and c = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 3.
(i) f(x) = cos 2x in [- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\)]
(ii) f(x) = sin x – 1 in [\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\)]
Solution:
(i) Given f(x) = cos 2x in [- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\)]
Since cosine function is continuous and derivable everywhere in its domain.
∴ f(x) is cintinuous in [- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\)] and derivable in (- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\))
also f(- \(\frac{\pi}{4}\)) = 0 = f(\(\frac{\pi}{4}\))
∴ all the three conditions of Roll’s theorem satisfied.
∃ atleast one real number c ∈ (- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\))
s.t. f'(c) = 0 i.e. – 2 sin 2c = 0
⇒ sin 2c = 0
⇒ c = 0 ∈ (- \(\frac{\pi}{4}\), \(\frac{\pi}{4}\))
Hence Roll’s theorem is verified and c = 0.

(ii) Since sine function and constant functions are continuous and differentiable everywhere.
∴ f(x) is continuous in [\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\)]
and derivable in (\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\)).
Also f(\(\frac{\pi}{2}\)) = 1 – 1 = o
and f(\(\frac{5 \pi}{2}\)) = sin \(\frac{5 \pi}{2}\) – 1
= 1 – 1 = 0
∴ All the three conditions of Rolle’s theorem are satisfied.
∴ ∃ atleast one real no c ∈ (\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\))
s.t. f'(c) = 0
i.e. cos c = 0
⇒ c = nπ + \(\frac{\pi}{2}\) ∀ n ∈ I
Thus, c = \(\frac{\pi}{2}\), \(\frac{3 \pi}{2}\), \(\frac{5 \pi}{2}\)
But c = – \(\frac{\pi}{2}\), \(\frac{\pi}{2}\) ∉ (\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\))
∴ c = \(\frac{3 \pi}{2}\) [\(\frac{\pi}{2}\), \(\frac{5 \pi}{2}\)]
Hence Rolls theorem is verified and
c = \(\frac{3 \pi}{2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 4.
(i) f(x) = sin 2x in [0, \(\frac{\pi}{2}\)] (NCERT Exampler)
(ii) f(x) = sin 3x in [0, π].
Solution:
(i) Given f(x) = sin 2x in [0, \(\frac{\pi}{2}\)]
Since sin function is continuous and derivable everywhere
∴ f(x) is continuous in [0, \(\frac{\pi}{2}\)] and derivable in (0, \(\frac{\pi}{2}\))
Also, f(0) = 0 = f(\(\frac{\pi}{2}\))
∴ All the three conditions of Roll’s theorem are sarisfied.
∴ ∃ atleast one real no. c ∈ (0, \(\frac{\pi}{2}\)) s.t. f'(c) = 0
i.e. 2 cos 2c = 0
⇒ cos 2c = 0
⇒ 2c = \(\frac{\pi}{2}\)
⇒ c = \(\frac{\pi}{4}\) ∈ (0, \(\frac{\pi}{2}\))
Hence Roll’s theorem is verified and c = \(\frac{\pi}{4}\).

(ii) Given f(x) = sin 3x
since sin 3x trigonometric sine function, is continuous and differentiable everywhere.
∴ f(x) is continuous on [0, π] and f (x) is differentiable on (0, π).
f(0) = 0 ; f(π) = sin 3π = 0
∴ f(0) = f(π)
Thus, all the three conditions of Rolle’s theorem arc satisfied.
Now we want to show that ∃ atleast one real number c ∈ (0, π) s.t. f’ (c) = 0
we have, f(x) = sin 3x
∴ f’ (x) = 3 cos 3x
Now f’(c) = 0
⇒ 3 cos 3c = 0
⇒ 3c = \(\frac{\pi}{2}\)
⇒ c = \(\frac{\pi}{6}\)
i.e. c = π/6 ∈ (0, π) s.t.f’ (c) = 0
Hence Rolle’s theorem verified.

Question 5.
(i) f(x) = ex sin x on [0, π] (ISC 2005)
(ii) f(x) = ex cos x on [- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\)]
(iii) f(x) = e-x sin x in [0, π]
(iv) f(x) = e2x (sin 2x – cos 2x) in [\(\frac{\pi}{8}\), \(\frac{5 \pi}{8}\)]
Solution:
(i) Given f(x) = ex sinx
since, ex and sin x are dif1erentiable and continuous everywhere.
Therefore, product of two functions
i.e. f(x) = ex sin x is continuous on [0, π] and differentiable on (0, π).
Now f(0) = 0;
f(π) = eπ × 0 = 0
∴ f(0) = f(c)
So, all the three conditions of Rolle’s theorem are satisfied.
Now we want to show that, ∃ atleast one real number
c ∈ (0, π) such that f’ (c) = 0.
We have f (x) = ex sin x
∴ f'(x) = ex cos x + sin x ex
= ex (cos x + sin x)
Now f’ (c) = 0
⇒ ec (cos c + sin c) = 0
⇒ cos c + sin c = 0 [∵ ec > 0]
⇒ tan c = – 1
= tan \(\frac{3 \pi}{4}\)
⇒ c = \(\frac{3 \pi}{4}\) ∈ (0, π) such that f’ (c) = 0
Hence Rolle’s theorem verified.

(ii) Given f(x) = ex cos x in [- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\)]
Since cosine and exponential function are continuous everywhere.
Also product of two continuous functions is continuous.
∴ f (x) is continuous in [- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\)] and derivable in (- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\)).
Also f’(x) = ex cos x – ex sin x
Also, f(- \(\frac{\pi}{2}\)) = 0
= f(\(\frac{\pi}{2}\))
Therefore all the three conditions of Rolle’s theorem are satisfied.
∴∃ atleast are real numbers c ∈ (- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\))
s.t. f’(c) = 0, i.e. ec (cos c – sin c) = 0
⇒ cos c – sin c = 0
[∵ ec ≠ 0]
⇒ tan c = 1
⇒ c = \(\frac{\pi}{4}\) ∈ (- \(\frac{\pi}{2}\), \(\frac{\pi}{2}\))
∴ Rolle’s theorem is verified.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

(iii) Given f(x) = e-x sin x
Clearly e-x is continuous and derivable everywhere and sin x is also continuous and differentiable in its domain.
Also product of two continuous functions is continuous.
Thus f(x) be continuous in [0, π]
and f(x) be derivable in (0, π).
Also f(0) = e-0 sin 0 = 0;
f(π) = e sin π
= e × 0 = 0
∴ f(0) = f(π)
Thus, all the three conditions of Rolle’s theorem are satisfied.
So ∃ atleast one real number c ∈ (0, π) such that f’ (c) = 0
Diff. eqn. (1) both sides w.r.t. x, we have
⇒ f'(x) = e-x cos x + sin x e– x (- 1)
⇒ f’ (x) = e– x (cos x – sin x)
Now f’ (c) = 0
⇒ e– c (cos c – sin c) = 0
⇒ cos c – sin c = 0 (∵ e– c > 0)
⇒ tan c = 1
= tan \(\frac{\pi}{4}\)
⇒ c = nπ + \(\frac{\pi}{4}\) ∀ n ∈ I
but c ∈ (0, π)
∴ c = \(\frac{\pi}{4}\)
Thus there exists \(\frac{\pi}{4}\) ∈ (0, π) s.t. f'(c) = 0
i.e. f'(\(\frac{\pi}{4}\)) = 0
Hence Rolle’s theorem is verified and c = \(\frac{\pi}{4}\).

(iv) Given f(x) = e2x (sin 2x – cos 2x)
Clearly exponential function is differentiable everywhere and sine, cosine functions are differentiable everywhere in its domain,
f’(x) = e2x (2 cos 2x + 2 sin 2x) + (sin 2x – cos 2x) e2x . 2
= e2x (4 sin 2x) which exists ∀ x ∈ R
Thus f(x) is continuous in [\(\frac{\pi}{8}\), \(\frac{5 \pi}{8}\)] and derivable in (\(\frac{\pi}{8}\), \(\frac{5 \pi}{8}\))
f(\(\frac{\pi}{8}\)) = \(e^{\frac{\pi}{4}\left(\sin \frac{\pi}{4}-\cos \frac{\pi}{4}\right)}\)
= 0

f(\(\frac{5 \pi}{8}\)) = \(e^{\frac{5 \pi}{4}}\left(\sin \frac{5 \pi}{4}-\cos \frac{5 \pi}{4}\right)\)
= \(e^{\frac{5 \pi}{4}}\left[\sin \left(\pi+\frac{\pi}{4}\right)-\cos \left(\pi+\frac{\pi}{4}\right)\right]\)
= \(e^{\frac{5 \pi}{4}}\left[-\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right]\)
= 0

Thus all the three conditions of Rolle’s Theorem are satisfied so atleast one real number C ∈ s.t.f'(c) = 0
⇒ 4e2c sin 2c = 0
⇒ sin 2c = 0 [∵ e2c > 0]
⇒ 2c = 0 π, 2π, 3π, ………….
⇒ c = 0, \(\frac{\pi}{2}\), π, \(\frac{3 \pi}{2}\), ………….
Clearly c = \(\frac{\pi}{2}\) ∈ (\(\frac{\pi}{8}\), \(\frac{5 \pi}{8}\)).
∴ Rolle’s theorem verified.

Question 5 (old).
(iii) f(x) = e2x (sin 2x – cos 2x) in [\(\frac{\pi}{8}\), \(\frac{5 \pi}{8}\)]. (ISC 2008)
Solution:
Given f(x) = e2x sin x
Clearly ex is continuous and derivable everywhere and sin x is also continuous and differentiable in its domain.
Also product of two continuous functions is Continuous.
Thus f(x) be continuous in [0, π]
and f(x) be derivable in (0, π).
Also f(0) = e-0 sin 0 = 0;
f(π) = e– π sin π
= e– π × 0 = 0
∴ f(0) = f( π)
Thus, all the three conditions of Rolle’s theorem are satisfied.
So ∃ atleast are real number c ∈ (0, π) such that f’ (c) = 0
Diff. eqn. (1) both sides w.r.t. x, we have
f’(x) = e-x cos x + sin x e-x (- 1)
⇒ f'(x) = e-x (cos x – sin x)
Now f'(c) = 0
⇒ e– c (cos c – sin c) = 0
⇒ cos c – sin c = 0 (∵ e– c > 0)
⇒ tan c = 1
= tan \(\frac{\pi}{4}\)
⇒ c = nπ + \(\frac{\pi}{4}\) ∀ n ∈ I
but c ∈ (0, π)
∴ c = \(\frac{\pi}{4}\)
Thus there exists \(\frac{\pi}{4}\) ∈ (0, π) s.t. f'(c) = 0
i.e. f'(\(\frac{\pi}{4}\)) = 0
Hence Rolle’s theorem is verified and c = \(\frac{\pi}{4}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 6.
Apply Rolle’s theorem to find point (or points) on the following curves where the tangent is parallel to x-axis :
(i) y = x2 in [- 2, 2]
(ii) y = – 1 + cos x on (0, 2π) (NCERT Exemplar)
Solution:
(i) Given y = x2 in [- 2, 2]
Since f (x) is polynomial in x
∴ it is continuous and derivable everywhere
∴ f(x) is continuous in [- 2, 2] and derivable in (- 2, 2).
Also f(- 2) = 4 = f(2)
Hence all the three conditions of Rolle’s theorem are satisfied.
∴ ∃ atleast one real no. c ∈ (- 2, 2) s.t.f’(c) = 0
i.e. c = 0 ∈ (- 2, 2).
When x = 0,
y = 02= 0
∴ (0, 0) be the required point at which tangent is || to x-axis.
[By Geometrical interpretation of Rolle’s Theorem]

(ii) Let f(x) = y = – 1 + cos x
Clearly f(x) is continuous in [0, 2π] and
derivable in (0, 2π).
Since curve and constant functions are continuous and everywhere differentiable
Now f(0) = – 1 + 1 = 0;
f(2π) = – 1 + cos 2π
= – 1 + 1 = 0
∴ f(0) = f (2π)
Thus, all the three conditions of Rolle’s theorem are satisfied.
So ∃ atleast one real number c ∈ (0, 2π) s.t.f’ (c) = 0
Diff. eqn. (1) w.r.t. x, we get
f’ (x) = – sin x
Now f’(c) = 0
⇒ – sin c = 0
But π ∈ (0, 2π)
∴ c = π ∈ (0, 2π)
So there exists a real number c = π ∈ (0, 2π)
s.t f’ (π) = 0 i.e. at which the tangent is || to x-axis
When x = π
∴ from (1);
y = – 1 + cos π
= – 1 – 1
= – 2
Hence, the required point on given curve at which the tangent is parallel to x-axis be (π, – 2).

Question 7.
Verify the conditions of Rolle’s Theorem for the following function :
f(x) = log (x2 + 2) – log 3 on [- 1, 1].
Find a point in the given interval where the tangent to the curve is parallel to x axis. (ISC 2016)
Solution:
Let f(x) = log (x2 + 2) – log 3
Clearly f(x) is continuous in [- 1, 1].
Now f'(x) = \(\frac{2 x}{x^2+2}\) exists ∀ x ∈ (- 1, 1)
∴ f is derivable in (- 1, 1).
further f(- 1) = log 3 – log 3 = 0
and f(1) = log 3 – log 3 = 0
∴ f(- 1) = f (1) = 0
Thus all the three conditions of Rolle’s theorem are satisfied.
∴∃ atleast one real number c ∈ (- 1, 1) s.t.f’(c) = 0
i.e. \(\frac{2 c}{c^2+2}\) = 0
⇒ c = 0 ∈ (- 1, 1)
Hence Rolle’s theorem is verified.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 8.
If Rolle’s theorem holds for the function f(x) = x3 + ax2 + bx in [1, 2] at the point x = \(\frac{4}{3}\), then find the values of a and b. (ISC 2009)
Solution:
Given f(x) = x3 + ax2 + bx …………..(1)
Since it is given that, Rolle’s theorem holds for the function f(x) in [1, 2].
∴ f(1) = f(2)
⇒ 1 + a + b = 8 + 4a + 2b
⇒ 3a + b = – 7 ………….(2)
Also ∃ atleast one rai number x = c ∈ (1, 2) s.t f’(c) = 0
Also it is given that, Rolle’s theorem holds for f(x) is [1, 2] at the point x = \(\frac{4}{3}\).
∴ f'(\(\frac{4}{3}\)) = 0
Diff. (1) w.r.t. x; we have
f’(x) = 3x2 + 2ax + b
Now f'(\(\frac{4}{3}\) = 0
0 = 3 × \(\frac{16}{9}\) + 2a × \(\frac{4}{3}\) + b
8a + 3b = – 16 …………(3)
On solving eqn. (2) and eqn. (3); we have a = – 5 ; b = 8.

Question 9.
Examine if Rolle’s theorcm is applicable to the function f(x) = |x| for x ∈ [- 2, 2] What can you say about the converse of Rolle’s theorem ? (NCERT)
Solution:
at x = 2
\(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{+}}{\mathrm{Lt}}\) [x] = 2 and
\(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow 2^{-}}{\mathrm{Lt}}\) [x]
= (2 – 1) = 1
∴ f(x) is not continuous at x = 2 ∈ [- 2, 2]
Hence Rolle’s theorem is not applicable.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

Question 10.
What can you say about the applicability of Rolle’s theorem for the following functions in the indicated intervals ?
(i) f(x) = x1/3 in [- 1, 1]
(ii) f(x) = x2/3 in [- 2, 2]
(iii) f(x) = 2 + (x – 1)2/3 in [0, 2]
(iv) f(x) = 1 + |x – 2| in [0, 4]
(v) f(x) = tan x in [0, π]
(vi) f(x) = sec x in [0, 2π]
(vii) f(x) = \(\frac{x(x-2)}{x-1}\) in [0, 2]
(viii) f(x) = x2 + 1 in [- 1, 2]
Solution:
(i) Given f(x) = x1/3
∴ f'(x) = \(\frac{1}{3} \frac{1}{x^{2 / 3}}\) does not exists at x = 0 ∈ (- 1, 1)
∴ function f(x) is not derivable in (- 1, 1)
Hence Rolle’s theorem is not applicable.

(ii) Given f(x) = x2/3
∴ f'(x) = \(\frac{2}{3}\) x-1/3
= \(\frac{2}{3 x^{1 / 3}}\)
which does not exists at x = 0 ∈ (- 1, 1)
∴ function f(x) is not derivable in (- 1, 1)
Hence Rolle’s theorem is not verified.

(iii) Given f(x) = 2 + (x -1)2/3 in [0, 2]
∴ f'(x) = \(\frac{2}{3}\) (x – 1)-1/3
= \(\frac{2}{3(x-1)^{1 / 3}}\)
which does not exists at x = 1.
∴ function f(x) is not derivable in x = 1 ∈ (0, 2).
Hence Rolle’s theorem is not applicable.

(iv) Given f(x) = 1 + |x – 2|
Clearly f(x) is continuous in [0, 4]

Differentiability at x = 2
Lf'(2) = \(\ {Lt}_{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12 1

[∵ as x → 2+
⇒ x > 2
⇒ x – 2 > 0
∴ |x – 2| = x – 2]
∴ Lf'(2) ≠ Rf'(2)
Thus f is not derivable or differentiable at x = 2.
Also, f'(x) = \(\frac{x-2}{|x-2|}\) ; x ≠ 2
Thus derivable of f(x) does not exists at x = 2.
∴ f(x) is not derivable at x = 2 ∈ (0, 4)
Hence f(x) is not derivable in (0, 4).
So condition (ii) of Rolle’s theorem is not satisfied.
Thus Rolle’s theorem is not applicable for f(x) = 1 + |x – 2| in [0, 4].

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

(v) Given f(x) = tan x in [0, 4]
Since f'(x) = sec2 x does not exists at x = \(\frac{\pi}{2}\)
Thus f(x) is not differentiable at x = \(\frac{\pi}{2}\) ∈ [0, π]
∴ f is not derivable in (0, π)
Hence Rolle’s theorem is not applicable.

(vi) Given, f(x) = sec x
Clearly at x = \(\frac{\pi}{2}\) ∈ [0, 2π]
f(\(\frac{\pi}{2}\)) = sec \(\frac{\pi}{2}\) which does not exists
as \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\mathrm{Lt}}\) f(x) = \(\underset{x \rightarrow \frac{\pi^{-}}{2}}{\mathrm{Lt}}\) sec x → + ∞
and \(\underset{x \rightarrow \frac{\pi^{+}}{2}}{\mathrm{Lt}}\) f(x) = latex]\underset{x \rightarrow \frac{\pi^{+}}{2}}{\mathrm{Lt}}[/latex] sec x → – ∞
Hence f(x) is continuous at x = \(\frac{\pi}{2}\) ∈ [0, 2π]
∴ f(x) is discontinuous in [0, 2π]
Hence the condition (i) of Roll’s theorem is not satisfied.
Thus, Rolle’s theorem is not appicable to functionf(x) = sec x in [0, 2π].

(vii) We have ;
f(x) = \(\frac{x(x-2)}{x-1}\)
Now f'(x) = \(\frac{(x-1)(2 x-2)-\left(x^2-2 x\right)}{(x-1)^2}\)
= \(\frac{2\left(x^2-2 x+1\right)-\left(x^2-2 x\right)}{(x-1)^2}\)
= \(\frac{x^2-2 x+2}{(x-1)^2}\)
Clearly f’( x) does not exists at x = 1 ∈ (0, 2)
Hence Rolle’s theorem is not applicable.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.12

(viii) Given f(x) = x2 + 1
Clearly f(x) be a polynomial function
∴ f(x) be continuous in [- 1, 2] and derivable in (- 1, 2).
But f(- 1) = 1 + 1 = 2;
f(2) = 22+ 1 = 5
∴ f(- 1) ≠ f(2)
So condition (iii) of Rolle’s theorem is not satisfied.
Hence Rolle’s theorem is not applicable to function f(x) = 1 + x2 in [- 1, 2].

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Access to comprehensive Class 12 ISC Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.11 Solutions encourages independent learning.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 1.
Find the second order derivatives of the following functions:

(i) x20 (NCERT)
(ii) x2 + 3x + 2 (NCERT)
(iii) x3 – 5x2 + 3x + 4
(iv) x3 + tan x (NCERT)
(v) log x (NCERT)
(vi) tan-1 x (NCERT)
Solution:
(i) Let y = x20 ;
Diff. w.r.t. x, we have
\(\frac{d y}{d x}\) = 20 x19 ;
Again Diff. both sides w.r.t. x, we get
∴ \(\frac{d^2 y}{d x^2}\) = 380 x18

(ii) Let y = x2 + 3x + 2
\(\frac{d y}{d x}\) = 2x + 3
and \(\frac{d^2 y}{d x^2}\) = 2

(iii) Let y = x3 – 5x2 + 3x + 4
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = 3x2 – 10x + 3
Diff. again w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = 6x – 10

(iv) Let y = x3 + tan x
∴ \(\frac{d y}{d x}\) = 3x2 + sec2 x
and \(\frac{d^2 y}{d x^2}\) = 6x + 2 sec2 x tan x

(v) Let y = log x,
Diff. both sides w.r.t. x, we have
∴ \(\frac{d y}{d x}\) = \(\frac{1}{x}\)
and \(\frac{d^2 y}{d x^2}\) = – \(\frac{1}{x^2}\) ; x ≠ 0.

(vi) Let y = tan-1 x
Diff. both sides w.r.t. x, we have
∴ \(\frac{d y}{d x}\) = \(\frac{1}{1+x^2}\)
Diff. again both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – \(\frac{1}{\left(1+x^2\right)^2} \times 2 x\)
= \(\frac{-2 x}{\left(1+x^2\right)^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 2.
(i) If y = log (x – 2), x > 2, find \(\frac{d^2 y}{d x^2}\).
(ii) If y = cot x, find \(\frac{d^2 y}{d x^2}\) at x = \(\frac{\pi}{4}\).
(iii) If x = at2 and y = 2at, then find \(\frac{d^2 y}{d x^2}\).
Solution:
(i) Given y = log (x – 2), x > 2
Differentiating w.r.t. x ; we have
\(\frac{d y}{d x}=\frac{1}{x-2}\) ;
again differentiating w.r.t. x, we have
\(\frac{d^2 y}{d x^2}=-\frac{1}{(x-2)^2}\).

(ii) Given y = cot x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = – cosec2 x
Differentiating both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – 2 cosec x \(\frac{d}{d x}\) (cosec x)
= 2 cosec2 x cot x
at x = \(\frac{\pi}{4}\),
\(\frac{d^2 y}{d x^2}\) = (2√2)2 × 1 = 4

(iii) Given x = at2 ………….(1)
and y = 2at …………(2)
diff. eqns. (1) and (2) w.r.t. t ; we have
\(\frac{d x}{d t}\) = 2at ;
\(\frac{d y}{d t}\) = 2a
∴ \(\frac{d y}{d x}\) = \(\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{2 a}{2 a t}\)
= \(\frac{1}{t}\)
Diff. both sides w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}=\frac{d}{d t}\left(\frac{1}{t}\right) \frac{d t}{d x}\)
= \(-\frac{1}{t^2} \frac{1}{2 a t}\)
= – \(\frac{1}{2 a t^3}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 3.
Find the second order derivative of the following functions:
(i) sin-1 x (NCERT)
(ii) x cos x (NCERT)
(iii) x sin 2x
(iv) ex sin 5x (NCERT)
(v) e2x sin 3x
(vi) log (log x) (NCERT)
(vii) \(\frac{\log x}{x}\)
(viii) x2 log |cos x|
(ix) \(\frac{2 x+1}{2 x+3}\)
Solution:
(i) Let y = sin-1 x ;
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}=\frac{1}{\sqrt{1-x^2}}\)
Again differentiating w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = – \(\frac{1}{2}\) (1 – x2)–\(\frac{1}{2}\)-1 (- 2x)
= \(\frac{x}{\left(1-x^2\right)^{3 / 2}}\)

(ii) Let y = x cos x ;
Diff. both sides w.r.t. x ; we get
\(\frac{d y}{d x}\) = x \(\frac{d}{d x}\) (cos x) + cos x \(\frac{d}{d x}\) (x)
= – x sin x + cos x
Again differentiating w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = – \(\frac{d}{d x}\) (x sin x) + \(\frac{d}{d x}\) cos x
= – [x cos x + sin x . 1] – sin x
= – x cos x – 2 sin x

(iii) Let y = x sin 2x ;
Diff. both sides w.r.t. x ; we get
\(\frac{d y}{d x}\) = 2x cos 2x + sin 2x
Again differentiating w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = 2 [- 2x sin 2x + cos 2x] + 2 cos 2x
∴ \(\frac{d^2 y}{d x^2}\) = – 4x sin 2x + 4 cos 2x

(iv) Let y = ex sin 5x ;
Differentiate both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = ex (5 cos 5x) + sin 5x ex
\(\frac{d^2 y}{d x^2}\) = – 25 sin 5x ex + 5 cos 5x ex + 5 cos 5x ex + sin 5x ex
∴ \(\frac{d^2 y}{d x^2}\) = 2ex [5 cos 5x – 12 sin 5x]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

(v) Let y = e2x sin 3x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = e2x (3 cos 3x) + sin 3x . e2x . 2
= e2x (3 cos 3x + 2 sin 3x)
Again differentiating w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = e2x (- 9 sin 3x + 6 cos 3x) + (3 cos 3x + 2 sin 3x) 2e2x
= e2x (- 5 sin 3x + 12 cos 3x)

(vi) Let y = log (log x)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = \(\frac{1}{\log x} \cdot \frac{1}{x}\)
Again differentiating w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = \(\frac{d}{d x}\) (x log x)-1
= (- 1) (x log x)-2 \(\frac{d}{d x}\) (x log x)
= \(\frac{-1}{(x \log x)^2}\) [x . \(\frac{1}{x}\) + log x . 1]
= \(\frac{-(1+\log x)}{(x \log x)^2}\)

(vii) Given y = \(\frac{log x}{x}\) ;
Diff. both sides w.r.t. x, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 1

(viii) Let y = x2 log |cos x|
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = 2x log |cos x| + \(\frac{x^2}{|\cos x|} \frac{\cos x}{|\cos x|}\) (- sin x)
= 2x log |cos x| + x2 (- tan x)
[∵ |cos x| . |cos x| = |cos2 x|
= |cos x|2
= cos2 x]
Again differentiating w.r.t. x, we get
\(\frac{d^2 y}{d x^2}\) = \(\frac{2 x}{|\cos x|} \frac{\cos x}{|\cos x|}\) (- sin x) + log |cos x| . 2 – (x2 sec2 x + 2x tan x)
= – 4x tan x – x2 sec2 x + 2 log |cos x|

(ix) Let y = \(\frac{2 x+1}{2 x+3}\)
= \(\frac{2 x+3-2}{2 x+3}\)
= 1 – \(\frac{2}{2 x+3}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=0+\frac{2}{(2 x+3)^2} \times 2\)
= \(\frac{4}{(2 x+3)^2}\)
Again differentiating w.r.t. x, we get
\(\frac{d^2 y}{d x^2}\) = \(\frac{-4 \times 2}{(2 x+3)^3} \times 2\)
= \(\frac{16}{(2 x+3)^3}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 4.
Find the second derivatives of the following functions:
(i) sec ax
(ii) cot (1 – 2x) (NCERT)
(iii) sin 3x cos 5x
(iv) sin3 x (NCERT)
(v) cos (2x2 – 1)
(vi) \(\sqrt{1-x^2}\). (NCERT)
Solution:
(i) Let y = sec ax
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = a sec ax tan ax
On differentiating again w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = a [a sec ax sec2 ax + a tan ax sec ax tan ax]
= a2 [sec3 ax + sec ax (sec2 ax – 1)]
= a2 sec ax (2 sec2 ax – 1)

(ii) Let y = cot (1 – 2x)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = – cosec2 (1 – 2x) (- 2)
Again diff. both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = 2 × 2 cosec (1 – 2x) {- cosec (1 – 2x) cot (1 – 2x)} (- 2)
= 8 cot (1 – 2x) cosec2 (1 – 2x)

(iii) Let y = sin 3x cos 5x
⇒ y = \(\frac{1}{2}\) (2 sin 3x cos 5x)
⇒ y = \(\frac{1}{2}\) [sin 8x + sin (- 2x)]
⇒ y = \(\frac{1}{2}\) [sin 8x – sin 2x]
diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = \(\frac{1}{2}\) [8 cos 8x – 2 cos x]
Again differentiating w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = \(\frac{1}{2}\) [- 64 sin 8x + 4 sin 2x]
= – 32 sin 8x + 2 sin 2x

(iv) Let y = sin3 x
= \(\frac{3 \sin x-\sin 3 x}{4}\)
[∵ sin 3x = 3 sin x – 4 sin3 x]
On differentiating w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = \(\frac{1}{4}\) [- 3 sin x + 9 sin 3x]
= \(\frac{3}{4}\) [3 sin 3x – sin x]

(v) Let y = cos (2x2 – 1) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = – sin (2x2 – 1) (4x)
Again diff. both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – 4 [sin (2x2 – 1) + x cos (2x2 – 1) 4x]
= – 4 [sin (2x2 – 1) + 4x2 cos (2x2 – 1)]

(vi) Let y = \(\sqrt{1-x^2}\) ;
Diff. both sides w.r.t. x, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 5.
(i) If y = cos-1 x, find \(\frac{d^2 y}{d x^2}\) interms of y alone. (NCERT)
(ii) Find \(\frac{d^2 y}{d x^2}\) when y = log \(\left(\frac{x^2}{e^x}\right)\).
Solution:
(i) Given y = cos-1 x ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^2}}\)
∴ \(\frac{d^2 y}{d x^2}\) = – (- \(\frac{1}{2}\)) (1 – x2)-3/2
= \(\frac{-x}{\left(1-x^2\right)^{3 / 2}}\)
= – \(\frac{\cos y}{\sin ^3 y}\)
= – cot y cosec2 y
[Since y = cos-1 x
⇒ x = cos y, y ∈ [0, π]]

(ii) Given y = log \(\left(\frac{x^2}{e^2}\right)\)
= log x2 – log e2
⇒ y = 2 log x – 2 log e ……….(1)
∴ \(\frac{d y}{d x}=\frac{2}{x}\)
again differentiating w.r.t. x, we get
\(\frac{d^2 y}{d x^2}=\frac{-2}{x^2}\).

Question 6.
(i) If y = cot x, prove that \(\frac{d^2 y}{d x^2}\) + 2 y \(\frac{d y}{d x}\) = 0.
(ii) If y = 5 cos x – 3 sin x, prove that \(\frac{d^2 y}{d x^2}\) + y = 0. (NCERT)
Solution:
(i) Given y = cot x ………..(1)
Diff. (1) w.r.t. x ; we get
\(\frac{d y}{d x}\) = – cosec2 x
Diff. again eqn. (2) w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = + 2 cosec2 x cot x
\(\frac{d^2 y}{d x^2}\) = 2 (- \(\frac{d y}{d x}\)) y
[using (1) and (2)]
⇒ \(\frac{d^2 y}{d x^2}\) + 2y \(\frac{d y}{d x}\) = 0

(ii) Given y = 5 cos x – 3 sin x ……….(1)
Diff. (1) w.r.t. x ; we get
\(\frac{d y}{d x}\) = – 5 sin x – 3 cos x ……..(2)
Diff. (2) w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = – 5 cos x + 3 sin x = – y [using (1)]
∴ \(\frac{d^2 y}{d x^2}\) + y = 0 [Hence proved]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 7.
(i) If y = x + tan x, prove that cos2 x . \(\frac{d^2 y}{d x^2}\) – 2y + 2x = 0.
(ii) If y = tan x + sec x, prove that \(\frac{d^2 y}{d x^2}\) = \(\frac{\cos x}{(1-\sin x)^2}\). (NCERT Exampler)
Solution:
(i) Given y = x + tan x ………..(1)
Differentiate eqn. (1) w.r.t. x, we get
\(\frac{d y}{d x}\) = 1 + sec2 x
= 2 + tan2 x ………..(2)
Differentiate (2) w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = 2 tan x (sec2 x)
⇒ cos2 x \(\frac{d^2 y}{d x^2}\) = 2 tan x
⇒ cos2 x \(\frac{d^2 y}{d x^2}\) = 2 (y – x) [using eqn. (1)]
⇒ cos2 x \(\frac{d^2 y}{d x^2}\) – 2y + 2x = 0 [Hence proved]

(ii) Let y = sec x + tan x …………(1)
Differentiate eqn. (1) both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = sec x tan x + sec2 x
= sec x . y ……….(2) [using (1)]
Again diff. both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = sec x \(\frac{d y}{d x}\) + y sec x tan x
= sec x ((sec x) y) + y sec x tan x [using (2)]
⇒ \(\frac{d^2 y}{d x^2}\) = y sec x [sec x + tan x]
= y2 sec x [using (1)]
⇒ cos x \(\frac{d^2 y}{d x^2}\) = y2 [Hence proved]

Question 8.
(i) If y = sec x – tan x, prove that cos x . \(\frac{d^2 y}{d x^2}\) = y2.
(ii) If y = x + cot x, prove that sin2 x . \(\frac{d^2 y}{d x^2}\) – 2y + 2x = 0
Solution:
(i) Given y = sec x – tan x ………..(1)
Differentiate eqn. (1) both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = sec x tan x – sec2 x
= – sec x (sec x – tan x)
= – (sec x) y …………….(2) [using (1)]
Diff. eqn. (2) w.r.t. x, we get
\(\frac{d^2 y}{d x^2}\) = – [sec x \(\frac{d y}{d x}\) + y sec x tan x]
= – [- y sec2 x + y sec tan x] [using (2)]
⇒ \(\frac{d^2 y}{d x^2}\) = + (sec x) y [sec x – tan x]
= y2 sec x
⇒ cos x \(\frac{d^2 y}{d x^2}\) = y2 [hence proved]

(ii) Given y = x + cot x
Diff. (1) w.r.t. x, we have
\(\frac{d y}{d x}\) = 1 – cosec2 x
again diff. both sides w.r.t. x, we get
⇒ \(\frac{d^2 y}{d x^2}\) = – 2 cosec x (- cosec x cot x)
= 2 cosec2 x cot x
⇒ sin2 x \(\frac{d^2 y}{d x^2}\) = 2 cot x
= 2 (y – x)
∴ sin2 x \(\frac{d^2 y}{d x^2}\) – 2y + 2x = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 9.
(i) If y = aemx + be-mx, prove that y2 – m2 y = 0.
(ii) If y = ae2x + be-x, prove that \(\frac{d^2 y}{d x^2}\) – \(\frac{d y}{d x}\) – 2y = 0
Solution:
(i) Given y = aemx + be-mx ………..(1)
Diff. both sides of eqn. (1) w.r.t. x, we have
\(\frac{d y}{d x}\) = aemx . m + be– mx . (- m)
Diff. again both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = m2 aemx + bm2 e-mx
= m2 [aemx + be-mx]
= m2 y
⇒ \(\frac{d^2 y}{d x^2}\) – m2y = 0
i.e. y2 – m2 y = 0

(ii) Given y = ae2x + be-x
Diff. both sides of eqn. (1) w.r.t. x, we have
\(\frac{d y}{d x}\) = 2ae2x – be-x
Differentiate eqn. (2) both sides w.r.t. x ; we have
\(\frac{d^2 y}{d x^2}\) = 4ae2x + be-x
L.H.S. = \(\frac{d^2 y}{d x^2}\) – \(\frac{d y}{d x}\)
= 4ae2x + be-x – (2ae2x – be-x) – 2 (ae2x + be-x)
= e2x (4a – 2a – 2a) + e-x (b + b – 2b)
= 0 . e2x + 0 . e-x
= 0
= R.H.S.
Thus \(\frac{d^2 y}{d x^2}\) – \(\frac{d y}{d x}\) – 2y = 0.

Question 9 (old).
(ii) If y = 500 e7x + 600 e-7x, prove that \(\frac{d^2 y}{d x^2}\) = 49 y. (NCERT)
Solution:
Given y = 500 e7x + 600 e-7x …………….(1)
Diff. (1) w.r.t. x , we get
\(\frac{d y}{d x}\) = 3500 e7x – 4200 e-7x
Again differentiating both sides w.r.t. x, we get
\(\frac{d^2 y}{d x^2}\) = 3500 × 7 e7x + 4200 × 7e -7x
= 49 [500 e7x + 600 e-7x]
= 49 y [using eqm. (1)]

Question 10.
If y = A cos nx + B sin nx, show that \(\frac{d^2 y}{d x^2}\) + n2 y = 0
Solution:
Given y = A cos nx + B sin nx …………….(1)
Diff. both sides of eqn. (1) w.r.t. x, we have
\(\frac{d y}{d x}\) = – A sin nx + Bn cos nx
Again diff. w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = – An2 cos nx – Bn2 sin nx
= – n2 y [using (1)]
∴ \(\frac{d^2 y}{d x^2}\) + n2 y = 0 [Hence proved]

Question 10 (old).
(i) If y = A sin x + B cos x, prove that \(\frac{d^2 y}{d x^2}\) + y = 0 (NCERT)
Solution:
Given y = A sin x + B cos x …………(1)
Diff. (1) w.r.t. x, we get
\(\frac{d y}{d x}\) = A cos x – B sin x ……….(2)
Diff. (2) w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = – A sin x – B cos x = – y
∴ \(\frac{d^2 y}{d x^2}\) + y = 0.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 11.
(i) If y = tan-1 x, prove that (1 + x2) \(\frac{d^2 y}{d x^2}\) + 2x \(\frac{d y}{d x}\) = 0
(ii) If y = sin-1 x, prove that (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) = 0. (NCERT)
Solution:
(i) Given, y = tan-1 x ………..(1)
\(\frac{d y}{d x}\) = \(\frac{1}{1+x^2}\)
⇒ (1 + x2) \(\frac{d y}{d x}\) = 1
again differentiate (1) w.r.t. x, we get
(1 + x2) \(\frac{d^2 y}{d x^2}\) + 2x \(\frac{d y}{d x}\) = 0

(ii) Given y = sin-1 x ;
Diff. w.r.t. x, we get
\(\frac{d y}{d x}=\frac{1}{\sqrt{1-x^2}}\)
\(\sqrt{1-x^2} \frac{d y}{d x}\) = 1 ;
Again diff. both sides w.r.t. x ; we have
\(\sqrt{1-x^2} \frac{d^2 y}{d x^2}\) + \(\frac{d y}{d x} \frac{1}{2}\) (1 – x2)-1/2 (- 2x) = 0
⇒ \(\sqrt{1-x^2} \frac{d^2 y}{d x^2}-\frac{x}{\sqrt{1-x^2}} \frac{d y}{d x}\) = 0
⇒ (1 – x2) \(\frac{d^2 y}{d x^2}\) – x . \(\frac{d y}{d x}\) = 0 [Hence proved].

Question 12.
(i) If y = sin (log x), prove that x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) + y = 0
(ii) If y = 2 cos (log x) + 3 sin (log x), prove that x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) + y = 0
Solution:
(i) Given y = sin (log x) ………..(1)
Diff. (1) both sides w.r.t. x ; we get
\(\frac{d y}{d x}\) = cos (log x) . \(\frac{1}{x}\)
⇒ x \(\frac{d y}{d x}\) = cos (log x)
Again differentiating both sides w.r.t. x ; we get
x \(\frac{d^2 y}{d x^2}\) + \(\frac{d y}{d x}\) . 1 = – sin (log x) . \(\frac{1}{x}\)
⇒ x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) = – y [using eqn. (1)]
⇒ x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) + y = 0

(ii) Given y = 2 cos (log x) + 3 sin (log x) ……..(1)
diff. eqn. (1) w.r.t. x ; we have
\(\frac{d y}{d x}\) = – 2 sin (log x) . \(\frac{1}{x}\) + 3 cos (log x) . \(\frac{1}{x}\)
⇒ x \(\frac{d y}{d x}\) = – 2 sin (log x) + 3 cos (log x) ……….(2)
Diff. eqn. (2) both sides w.r.t. x ;
x \(\frac{d^2 y}{d x^2}\) + \(\frac{d y}{d x}\) . 1 = – 2 cos (log x) . \(\frac{1}{x}\) – 3 sin (log x) .\(\frac{1}{x}\)
⇒ x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) = – [2 cos (log x) + 3 sin (log x)] [using (1)]
= – y
⇒ x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) + y = 0.

Question 12 (old).
If y = 3 cos (log x) + 4 sin (log x), prove that x2 \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) + y = 0.
Solution:
Given y = 3 cos (log x) + 4 sin (log x) ………….(1)
Differentiate both sides w.r.t. x ; we get
\(\frac{d y}{d x}\) = y1
= – 3 sin (log x) . \(\frac{1}{x}\) + 4 cos (log x) . \(\frac{1}{x}\)
∴ xy1 = – 3 sin (log x) + 4 cos (log x)
Differentiate (2) both sides w.r.t. x, we get
xy2 + y1 = – 3 cos (log x) . \(\frac{1}{x}\) – 4 sin (log x) . \(\frac{1}{x}\)
⇒ x (xy2 + y1) = – y [using (1)]
⇒ x2y2 + xy1 + y = 0 [Hence proved]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 13.
If y = x cos x, prove that x2 \(\frac{d^2 y}{d x^2}\) – 2x \(\frac{d y}{d x}\) + (2 + x2) y = 0
Solution:
Given y = x cos x ………….(1)
Diff. (1) both sides w.r.t. x ; we get
\(\frac{d y}{d x}\) = cos x – x sin x ………..(2)
Diff. eqn. (2) w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – sin x – [sin x + x cos x]
= – x cos x – 2 sin x ……….(3)
∴ L.H.S. = x2 \(\frac{d^2 y}{d x^2}\) – 2x \(\frac{d y}{d x}\) + (2 + x2) y
= x2 [- x cos x – 2 sin x] – 2x [cos x – x sin x] + (2 + x2) x cos x [using (1), (2) and (3)]
= – x3 cos x – 2x2 sin x – 2x cos x + 2x2 sin x + 2x cos x + x3 cos x
= 0
= R.H.S.
Thus, x2 \(\frac{d^2 y}{d x^2}\) – 2x \(\frac{d y}{d x}\) + (2 + x2) y = 0.

Question 14.
(i) If y = (cos-1 x)2, prove that (1 – x2) y2 – xy1 = 2.
(ii) If y = (tan-1 x)2, prove that (x2 + 1) \(\frac{d^2 y}{d x^2}\) + 2x (x2 + 1) \(\frac{d y}{d x}\) = 2.
(iii) If y = (sec-1 x)2, x > 1, show that x2 (x2 – 1) \(\frac{d^2 y}{d x^2}\) + (2x3 – x) \(\frac{d y}{d x}\) – 2 = 0
Solution:
(i) Given y = (cos-1 x)2
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = y1
= 2 cos-1 x \(\left(\frac{-1}{\sqrt{1-x^2}}\right)\)
⇒ \(\sqrt{1-x^2}\) y1 = – 2 cos-1 x …………(1)
Diff. eqn. (1) both sides w.r.t. x, we get
\(\sqrt{1-x^2}\) y2 + y1 \(\frac{1}{2}\) (1 – x2)–\(\frac{1}{2}\) (- 2x)
= + \(\frac{2}{\sqrt{1-x^2}}\)
⇒ \(\sqrt{1-x^2}\) y2 – \(\frac{x y_1}{\sqrt{1-x^2}}\) = \(\frac{2}{\sqrt{1-x^2}}\)
multiplying both sides by \(\sqrt{1-x^2}\) ; we have
(1 – x2) y2 – xy1 = 2

(ii) Given, y = (tan-1 x)2 ;
Differentiate both sides w.r.t. x, we get
y1 = 2 tan-1 x . \(\frac{1}{1+x^2}\)
⇒ (1 + x2) y1 = 2 tan-1 x ……….(1)
agaion differentiate both sides w.r.t. x, we get
(1 + x2) y2 + 2x (1 + x2) y1 = 2.

(iii) Given y = (sec-1 x)2
Diff. both sides w.r.t. x ; we have
\(\frac{d y}{d x}\) = 2 sec-1 x \(\frac{d}{d x}\) sec-1 x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 3

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 15.
(i) If y = log (x + \(\sqrt{x^2+1}\)), prove that (x2 + 1) \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) = 0.
(ii) If y = log (x + \(\sqrt{x^2+a^2}\)), prove that (x2 + a2) y2 + xy1 = 0
Solution:
(i) Given y = log (x + \(\sqrt{x^2+1}\)) ………..(1)
Diff. (1) w.r.t. x, we get
\(\frac{d y}{d x}=\frac{1}{x+\sqrt{x^2+1}}\left[1+\frac{1}{2}\left(x^2+1\right)^{-1 / 2} 2 x\right]\)
= \(\frac{1}{x+\sqrt{x^2+1}}\left[\frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}}\right]\)
= \(\frac{1}{\sqrt{x^2+1}}\)
⇒ \(\sqrt{x^2+1} \frac{d y}{d x}\) ……….(2)
diff. eqn. (2) w.r.t. x, we get
\(\sqrt{x^2+1} \frac{d^2 y}{d x^2}+\frac{d y}{d x} \cdot \frac{1}{2}\) (x2 + 1)-1/2 . 2x = 0
\(\sqrt{x^2+1} \frac{d^2 y}{d x^2}+\frac{x}{\sqrt{x^2+1}} \frac{d y}{d x}\) = 0 ;
Multiplying both sides by \(\sqrt{x^2+1}\) ; we have
⇒ (x2 + 1) \(\frac{d^2 y}{d x^2}\) + x \(\frac{d y}{d x}\) = 0 [Hence proved]

(ii) Given y = log (x + \(\sqrt{x^2+a^2}\))
Diff. both sides w.r.t. x, we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 4

Multiplying throughout by \(\sqrt{x^2+a^2}\) ; we have
(x2 + a2) y2 + xy1 = 0

Question 16.
If y = cos (sin x), prove that \(\frac{d^2 y}{d x^2}\) + tan x \(\frac{d y}{d x}\) + y cos2 x = 0.
Solution:
Given y = cos (sin x) ………..(1)
Diff. both sides of eqn. (1) w.r.t. x, we have
\(\frac{d y}{d x}\) = – sin (sin x) . cos x
again diff. both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = – [sin (sin x) (- sin x) + cos2 x cos (sin x)]
⇒ \(\frac{d^2 y}{d x^2}\) = sin x sin (sin x) – cos2 x cos (sin x)
L.H.S. = \(\frac{d^2 y}{d x^2}\) + tan x \(\frac{d y}{d x}\) + y cos2 x
= sin x sin (sin x) – cos2 x cos (sin x) + tan x {- cos x sin (sin x)} + cos2 cos (sin x)
= sin x sin (sin x) – cos2 x cos (sin x) – sin x sin (sin x) + cos2 cos (sin x)
= 0
= R.H.S.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 17.
(i) If y = etan-1 x, prove that (1 + x2) \(\frac{d^2 y}{d x^2}\) + (2x – 1) \(\frac{d y}{d x}\) = 0.
(ii) If x = tan (\(\frac{1}{a}\) log y), then prove that (1 + x2) \(\frac{d^2 y}{d x^2}\) + (2x – a) \(\frac{d y}{d x}\) = 0.
(iii) If y = ea cos-1 x – 1 < x < 1, prove that (1 – x2) \(\frac{d^2 y}{d x^2}\) – x \(\frac{d y}{d x}\) – a2y = 0.
Solution:
(i) Given y = etan-1 x …….(1)
diff. both sides of eqn. (1) w.r.t. x ; we have
\(\frac{d y}{d x}\) = etan-1 x \(\frac{d}{d x}\) tan-1 x
\(\frac{d y}{d x}\) = etan-1 x \(\frac{1}{1+x^2}\)
⇒ (1 + x2) \(\frac{d y}{d x}\) = y [using eqn. (1)]
Diff. again both sides w.r.t. x ; we have
(1 + x2) \(\frac{d^2 y}{d x^2}\) + \(\frac{d}{d x}\) (2x) = \(\frac{d y}{d x}\)
⇒ (1 + x2) \(\frac{d^2 y}{d x^2}\) + (2x – 1) \(\frac{d y}{d x}\) = 0

(ii) Given x = tan (\(\frac{1}{a}\) log y) ……..(1)
⇒ a tan-1 x = log y
⇒ y = ea tan-1 x
Diff. eqn. (1) w.r.t. x, we get
y1 = ea tan-1 x \(\left(\frac{a}{1+x^2}\right)\)
⇒ (1 + x2) y1 = ay …………(2) [using (1)]
Diff. eqn. (2) w.r.t. x, we get
(1 + x2) y2 + 2xy1 = ay1
⇒ (1 + x2) + (2x – a) y1 = 0 [Hence Proved]

(iii) Given y = ea cos-1 x ………..(1)
Diff. (1) w.r.t. x, we get
y1 = ea cos-1 x \(\left(\frac{-a}{\sqrt{1-x^2}}\right)\)
⇒ \(\sqrt{1-x^2}\) y1 = – ay
Diff. eqn. (2) w.r.t. x, we get
⇒ \(\sqrt{1-x^2}\) y2 + y . \(\frac{1}{2}\) (1 – x2)-1/2 (-2x) = ay1
⇒ (1 – x2) – xy1 = a2 y [usin eqn. (2)]
[Hence Proved].

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 18.
If y = log \(\left(\frac{x}{a+b x}\right)^x\), prove that x3 \(\frac{d^2 y}{d x^2}\) = (x \(\frac{d y}{d x}\) – y)2
Solution:
Given y = x loge \(\left(\frac{x}{a+b x}\right)\)
Diff. both sides w.r.t. x ; we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 5

Question 19.
If √x + √y = √a, find \(\frac{d^2 y}{d x^2}\) at x = a.
Solution:
Given, √x + √y = √a ……….(1)
Diff. eqn. (1) both sides w.r.t. x, we have
\(\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}\) = 0
⇒ \(\frac{d y}{d x}=-\frac{\sqrt{y}}{\sqrt{x}}\)
diff. again w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}\) = – \(\left[\frac{1}{\sqrt{x}}\left(+\frac{1}{2}\right) y^{-\frac{1}{2}} \frac{d y}{d x}+\sqrt{y}\left(-\frac{1}{2}\right) x^{-\frac{3}{2}}\right]\)
= – \(\left[\frac{1}{2 \sqrt{x}} \frac{1}{\sqrt{y}}\left(-\frac{\sqrt{y}}{\sqrt{x}}\right)-\frac{\sqrt{y}}{2 x^{3 / 2}}\right]\)
at x = a
∴ from eqn. (1) ; y = 0
Thus, (\(\frac{d^2 y}{d x^2}\))x=a = – \(\left[-\frac{1}{2 a}-\frac{0}{2 a^{3 / 2}}\right]=\frac{1}{2 a}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 20.
If xmyn = (x + y)m+n, then prove that
(i) \(\frac{d y}{d x}=\frac{y}{x}\)
(ii) \(\frac{d^2 y}{d x^2}\) = 0 (NCERT Exampler)
Solution:
Given xmyn = (x + y)m+n
Tsaking logarithm on both sides ; we have
m log x + n log y = (m + n) log (x + y)
[∵ log ab = b log a
and log (ab) = log a + log b]
Diff. both sides w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 6

Question 21.
If x = a (θ – sin θ), y = a (1 + cos θ), find \(\frac{d^2 y}{d x^2}\).
Solution:
Given x = a (θ – sin θ)
and y = a (1 + cos θ)
∴ \(\frac{d x}{d \theta}\) = a (1 – cos θ)
and \(\frac{d y}{d \theta}\) = – a sin θ
Thus, \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}\)
= \(\frac{-a \sin \theta}{a(1-\cos \theta)}\)
= \(\frac{-2 \sin \theta / 2 \cos \theta / 2}{2 \sin ^2 \theta / 2}\)
= – cot \(\frac{\theta}{2}\)

Question 21 (old).
If x cos (a + y) = cos y, prove that sin a \(\frac{d^2 y}{d x^2}\) + sin 2 (a + y) \(\frac{d y}{d x}\) = 0.
Solution:
Given x cos (a + y) = cos y
⇒ x = \(\frac{\cos y}{\cos (a+y)}\) …………..(1)
Diff. eqn. (1) w.r.t. y ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 7

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 22.
If x = log t and y = \(\frac{1}{t}\), prove that \(\frac{d^2 y}{d x^2}\) + \(\frac{d y}{d x}\) = 0.
Solution:
Given x = log t ………(1)
and y = \(\frac{1}{t}\) ……………(2)
Diff. eqn. (1) and (2) w.r.t. t, we have
\(\frac{d x}{d t}=\frac{1}{t}\) ;
\(\frac{d y}{d t}=-\frac{1}{t^2}\)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-\frac{1}{t^2}}{\frac{1}{t}}=-\frac{1}{t}\)
= – y [using (2)]
Diff. again both sides w.r.t. x, we have
\(\frac{d^2 y}{d x^2}=-\frac{d y}{d x}\)
⇒ \(\frac{d^2 y}{d x}+\frac{d y}{d x}\) = 0.

Question 23.
If x = a sin pt and y = b cos pt, find the value of \(\frac{d^2 y}{d x^2}\) at t = 0.
Solution:
Given x = a sin pt ………..(1)
and y = b cos pt …………(2)
Diff. eqn. (1) and (2) w.r.t. t, we have
\(\frac{d x}{d t}\) = ap cos pt ……….(3)
\(\frac{d y}{d t}\) = – bp sin pt ………..(4)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-b p \sin p t}{a p \cos p t}\)
= – \(\frac{b}{a}\) tan pt ……….(5) [using (3) and (4)]
Diff. eqn. (5) w.r.t. x, we have
\(\frac{d^2 y}{d x^2}\) = \(\frac{d}{d x}\) (- \(\frac{b}{a}\) tan pt)
= – \(\frac{b}{a}\) sec2 pt . p. \(\frac{d t}{d x}\)
= \(-\frac{b p}{a} \sec ^2 p t \times \frac{1}{a p \cos p t}\) [using (3)]
= – \(\frac{b}{a^2}\) (sec3 pt)
∴ at t = 0,
\(\frac{d^2 y}{d x^2}=-\frac{b}{a^2} \times 1\)
= \(-\frac{b}{a^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 24.
If x = a sec3 θ and y = a tan3 θ, find \(\frac{d^2 y}{d x^2}\).
Solution:
Given x = a sec3 θ ………….(1)
y = a tan3 θ …………(2)
Diff. eqn (1) and (2) w.r.t. θ ; we have
\(\frac{d x}{d \theta}\) = 3a sec2 θ (sec θ tan θ)
= 3a sec3 θ tan θ
and \(\frac{d x}{d \theta}\) = 3a tan2 θ sec2 θ
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{3 a \tan ^2 \theta \sec ^2 \theta}{3 a \sec ^3 \theta \tan \theta}\)
= \(\frac{\tan \theta}{\sec \theta}\)
= sin θ
diff. both sides w.r.t. x ;
\(\frac{d^2 y}{d x^2}\) = cos θ \(\frac{d \theta}{d x}\)
= cos θ \(\frac{1}{3 a \sec ^3 \theta \tan \theta}\)
= \(\frac{1}{3 a \sec ^4 \theta \tan \theta}\)
at θ = \(\frac{\pi}{3}\) ;
\(\frac{d^2 y}{d x^2}\) = \(\frac{1}{3 a(2)^4 \sqrt{3}}
= [latex]\frac{1}{48 \sqrt{3} a}\)

Question 25.
If x = a (1 + cos t), y = a (t + sin t), find \(\frac{d^2 y}{d x^2}\) at t = \(\frac{\pi}{2}\).
Solution:
Given x = a (1 + cos t)
and y = a (t + sin t)
∴ \(\frac{d x}{d t}\) = – a sin t ;
\(\frac{d y}{d t}\) = a (1 + cos t)
Thus, \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{a(1+\cos t)}{-a \sin t}\)
∴ \(\frac{d y}{d x}=\frac{2 \cos ^2 t / 2}{-2 \sin t / 2 \cos t / 2}\)
= – cot \(\frac{t}{2}\)
Again diff. w.r.t. x ; we get
\(\frac{d^2 y}{d x^2}=\frac{d}{d x}\left(-\cot \frac{t}{2}\right)\)
= cosec2 \(\frac{t}{2} \cdot \frac{1}{2} \frac{d t}{d x}\)
= \(\frac{1}{2} \ {cosec}^2 \frac{t}{2}\left(\frac{1}{-a \sin t}\right)\)
at t = \(\frac{\pi}{2}\),
\(\frac{d^2 y}{d x^2}=\frac{1}{2} \ {cosec}^2 \frac{\pi}{4}\left(\frac{1}{-a \sin \pi / 2}\right)\)
= \(-\frac{1}{2 a} \times(\sqrt{2})^2\)
= \(-\frac{1}{a}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11

Question 26.
If x = cos t + log (tan \(\frac{t}{2}\)), y = sin t, then find \(\frac{d^2 y}{d x^2}\) and \(\frac{d^2 y}{d x^2}\) at t = \(\frac{\pi}{4}\).
Solution:
Given x = cos t + log (tan \(\frac{t}{2}\)) ………..(1)
and y = sin t ……….(2)
diff. eqn. (1) and (2) w.r.t. x ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.11 8

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Students appreciate clear and concise ISC Maths Class 12 Solutions Chapter 5 Continuity and Differentiability Ex 5.10 that guide them through exercises.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Find \(\frac{d y}{d x}\) in the following (1 to 6) questions when :

Question 1.
(i) x = at2, y = 2 at (NCERT)
(ii) x = 2at2, y = at4 (NCERT)
Solution:
(i) Given x =at2 …………(1)
and y = 2at
Differentiate (1) and (2) w.r.t. ‘t’, we have
\(\frac{d x}{d t}\) = 2at
and \(\frac{d y}{d t}\) = 2a
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{2 a}{2 a t}=\frac{1}{t}\), t ≠ 0

(ii) Given, x = 2at2 ………….(1)
and y = at4 ………….(2)
Differentiate (1) and (2) w.r.t. ‘t’, we have
\(\frac{d x}{d t}\) = 4at
and \(\frac{d y}{d t}\) = 4at3
∴ \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{4 a t^3}{4 a t}\)
= t2

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 2.
(i) x = a cos θ, y = b sin θ (NCERT)
(ii) x = a cos θ, y = a sin θ (NCERT)
Solution:
(i) Given, x = a cos θ ;
y = b sin θ
Differentiating both sides w.r.t. θ ; we get
∴ \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}\)
= \(\frac{b \cos \theta}{-a \sin \theta}\)
= – \(\frac{b}{a}\) cot θ

(ii) Given, x = a cos θ ………..(1)
and y = a sin θ ………….(2)
Diff. (1) and (2) w.r.t. ‘θ’, we have
\(\frac{d x}{d \theta}\) = – a sin θ
and \(\frac{d y}{d \theta}\) = a cos θ
∴ \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}\)
= \(\frac{a \cos \theta}{-a \sin \theta}\)
= – cot θ.

Question 3.
(i) x = a sec θ, y = b tan θ (NCERT)
(ii) x = sin t, y = cos 2t (NCERT)
Solution:
(i) Given x = a sec θ
and y = b tan θ
Diff. both given eqn. w.r.t. θ, we have
∴ \(\frac{d x}{d \theta}\) = a sec θ tan θ
and \(\frac{d y}{d \theta}\) = b sec2 θ
Thus \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{b \sec ^2 \theta}{a \sec \theta \tan \theta}\)
= \(\frac{b}{a}\) cosec θ

(ii) Given x = sin t
and y = cos 2t ………..(2)
Diff. eqn. (1) and eqn. (2) w.r.t. t, we have
\(\frac{d x}{d t}\) = cos t
\(\frac{d y}{d t}\) = – sin 2t . 2
Thus, \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-2 \sin 2 t}{\cos t}\)
= \(\frac{-4 \sin t \cos t}{\cos t}\)
= – 4 sin t

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 4.
(i) x = 4t, y = (NCERT)
(ii) x = t + \(\frac{1}{t}\), y = t – \(\frac{1}{t}\) (NCERT Exampler)
(iii) x = a (t – sin t), y = a (1 + cos t)
Solution:
(i) Given x = 4t ……….(1)
and y = 4/t ………..(2)
Diff. (1) and (2) w.r.t. ‘t’, we have
\(\frac{d x}{d t}\) = 4
and \(\frac{d y}{d t}\) = – 4/t2
∴ \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{-\frac{4}{t^2}}{4}\)
= – \(\frac{1}{t^2}\)

(ii) Given x = (t + \(\frac{1}{t}\))
and y = (t – \(\frac{1}{t}\)) ……………(1)
Differentiating both sides of eqn. (1) w.r.t. x ; we have
\(\frac{d x}{d t}=\left(1-\frac{1}{t^2}\right)\) ;
\(\frac{d y}{d t}=\left(1+\frac{1}{t^2}\right)\)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{\left(t^2+1\right)}{\left(t^2-1\right)}\)
= \(\frac{\left(t+\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)}=\frac{x}{y}\) [using eqn. (1)]

(iii) x = a (t – sin t)
and y = a (1 + cos t)
∴ \(\frac{d x}{d t}\) = a (1 – cos t)
and \(\frac{d y}{d t}\) = – a sin t
Thus \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{-a \sin t}{a(1-\cos t)}\)
= \(\frac{-2 a \sin \frac{t}{2} \cos \frac{t}{2}}{2 a \sin ^2 \frac{t}{2}}\)
= – cot \(\frac{t}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 5.
(i) x = a cos3 t, y = b sin t
(ii) x = a (1 – sin t), y = a (1 + cos t)
Solution:
Given x = a cos3 t ………..(1)
and y = b sin3 t ………..(2)
Diff. eqn. (1) and eqn. (2) w.r.t. t, we have
\(\frac{d x}{d t}\) = 3a cos2 t (- sin t)
and \(\frac{d y}{d t}\) = 3b sin2 t (cos t)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{3 b \sin ^2 t \cos t}{3 a \cos ^2 t \sin t}\)
= – \(\frac{b}{a}\) tan t

(ii) Given x = a (1 – sin t) ……….(1)
and y = a (1 + cos t) ………..(2)
Diff. both eqns. w.r.t. t, we have
\(\frac{d x}{d t}\) = – a cos t ;
\(\frac{d y}{d t}\) = – a sin t
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-a \sin t}{-a \cos t}\)
= tan t.

Question 5 (old).
(i) x = a sin3 t, y = a cos3 t (ISC 2004)
Solution:
Given x = a sin3 t
and y = a cos3 t
Diff. eqn. (1) and eqn. (2) w.r.t. ‘t’, we have
\(\frac{d x}{d t}\) = 3a sin2 t cos t ;
\(\frac{d y}{d t}\) = 3a cos2 t (- sin t)
Thus, \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{-3 a \cos ^2 t \sin t}{3 a \sin ^2 t \cos t}\)
= – cos t

Question 6.
(i) x = a (θ + sin θ), y = a (1 – cos θ)
(ii) x = a (1 – cos θ), y = (θ + sin θ)
Solution:
(i) Given x = a (θ + sin θ) ………..(1)
and y = a (1 – cos θ) …………..(2)
Diff. eqn. (1) and (2) w.r.t. θ, we have
\(\frac{d x}{d \theta}\) = a (1 + cos θ)
\(\frac{d x}{d \theta}\) = a sin θ
Thus, \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{a \sin \theta}{a(1+\cos \theta)}\)
= \(\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}\)
= tan \(\frac{\theta}{2}\)

(ii) Given x = a (1 – cos θ) ;
y = a (θ + sin θ)
Diff. both sides w.r.t. θ ; we get
\(\frac{d x}{d \theta}\) = a sin θ;
\(\frac{d x}{d \theta}\) = a (1 + cos θ)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{a(1+\cos \theta)}{a \sin \theta}\)
= \(\frac{1+\cos \theta}{sin \theta}\)
= \(\frac{2 \cos ^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\)
= 2 cot \(\frac{\theta}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 7.
(i) x = et (sin t + cos t), y = et (sin t – cos t)
(ii) x = cos θ – cos 2θ, y = sin θ – sin 2θ (NCERT)
Solution:
(i) Given x = et (sin t + cos t)
and y = et (sin t – cos t)
Diff. both eqn.’s w.r.t. t, we have
\(\frac{d x}{d t}\) = et (cos t – sin t) + (sin t + cos t) et
= et (2 cos t)
and \(\frac{d y}{d t}\) = et (cos t + sin t) + (sin t – cos t) et
= et (2 sin t)
∴ \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{2 e^t \sin t}{2 e^t \cos t}\)
= tan t

(ii) Given x = cos θ – cos 2θ ……….(1)
and y = sin θ – sin 2θ ………..(2)
Diff. eqn. (1) and eqn. (2) w.r.t. θ, we have
\(\frac{d x}{d \theta}\) = – sin θ + 2 sin 2θ
and \(\frac{d y}{d \theta}\) = cos θ – 2 cos 2θ
∴ \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}\)
= \(\frac{\cos \theta-2 \cos 2 \theta}{-2 \sin \theta+2 \sin 2 \theta}\)

Question 8.
(i) x = a (cos θ + cos 2θ), y = b (sin θ + sin 2θ)
(ii) x = \(\frac{1+\log t}{t^2}\), y = \(\frac{3+ 2\log t}{t^2}\) (NCERT Exampler)
Solution:
Given x = a (cos θ + cos 2θ) …………(1)
and y = b (sin θ + sin 2θ) ………..(2)
Diff. eqn. (1) and eqn. (2) w.r.t. θ, we have
\(\frac{d x}{d \theta}\) = a (- sin θ – 2 sin 2θ) ……….(3)
and \(\frac{d y}{d \theta}\) = b (cos θ + 2 cos 2θ) …………..(4)
∴ \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}\)
= \(\frac{b(\cos \theta+2 \cos 2 \theta)}{a(-\sin \theta-2 \sin 2 \theta)}\)
= \(-\frac{b(\cos \theta+2 \cos 2 \theta)}{a(\sin \theta+2 \sin 2 \theta)}\)
[using eqn. (3) and eqn. (4)]

(iv) Given x = \(\frac{1+\log t}{t^2}\) ……….(1)
and y = \(\frac{3+ 2\log t}{t^2}\) …………..(2)
Differentiate eqn. (1) and (2) both sides w.r.t. ‘t’ ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10 1

Question 9.
x = 3 cos θ – 2 cos3 θ, y = 3 sin θ – 2 sin3 θ
Solution:
Given x = 3 cos θ – 2 cos3 θ
and y = 3 sin θ – 2 sin3 θ
Diff. both given eqn’s w.r.t. θ, we have
\(\frac{d x}{d \theta}\) = – 3 sin θ – 6 cos2 θ (- sin θ)
= – 3 sin θ + 6 cos2 θ sin θ ………..(1)
and \(\frac{d y}{d \theta}\) = 3 cos θ – 6 sin2 θ cos 2 …………….(2)
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{3 \cos \theta-6 \sin ^2 \theta \cos \theta}{-3 \sin \theta+6 \cos ^2 \theta \sin \theta}\)
[using (1) and (2)]
= \(\frac{3 \cos \theta\left[1-2 \sin ^2 \theta\right]}{-3 \sin \theta\left[1-2 \cos ^2 \theta\right]}\)
= \(\frac{3 \cos \theta\left(1-2 \sin ^2 \theta\right)}{-3 \sin \theta\left[1-2\left(1-\sin ^2 \theta\right)\right]}\)
= \(\frac{3 \cos \theta\left(1-2 \sin ^2 \theta\right)}{3 \sin \theta\left(1-2 \sin ^2 \theta\right)}\)
= cos θ.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 10.
(i) If x = 2 cos t – cos 2t and y = 2 sin t – sin 2t, find \(\frac{d y}{d x}\) at t = \(\frac{\pi}{4}\).
(ii) If x = 3 sin t – sin 3t, y = 3 cos t – cos 3t, find \(\frac{d y}{d x}\) at t = \(\frac{\pi}{3}\). (NCERT Exampler)
Solution:
(i) Given x = 2 cos t – cos 2t
and y = 2 sin t – sin 2t
Diff. both sides w.r.t. ‘t’ ; we have
\(\frac{d x}{d t}\) = – 2 sin t + 2 sin 2t ;
\(\frac{d y}{d t}\) = 2 cos t – 2 cos 2t
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\)
= \(\frac{2(\cos t-\cos 2 t)}{2(\sin 2 t-\sin t)}\)
at t = \(\frac{\pi}{4}\);
\(\frac{d y}{d x}=\frac{\cos \left(\frac{\pi}{4}\right)-\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}-\sin \frac{\pi}{4}}\)
= \(\frac{\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}\)
= \(\frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}\)
= √2 + 1

(ii) Given x = 3 sin t – sin 2t
= 3 sin t – (3 sin t – 4 sin3 t)
⇒ x = 4 sin3 t …….(1)
and y = 3 cos t – cos 3t ………..(2)
Diff. eqn. (1) and (2) w.r.t. t ; we get
\(\frac{d x}{d t}\) = 12 sin2 t cos t
\(\frac{d y}{d t}\) = – 3 sin t + 3 sin 3t
∴ \(\frac{d y}{d x}=\frac{d y / d t}{d x / d t}\)
= \(\frac{-\sin t+\sin 3 t}{4 \sin ^2 t \cos t}\)
at t = \(\frac{\pi}{3}\) ;
\(\frac{d y}{d x}=\frac{-\frac{\sqrt{3}}{2}+0}{4 \times \frac{3}{4} \times \frac{1}{2}}\)
= \(\frac{-\sqrt{3} \times 2}{2 \times 3}\)
= \(-\frac{1}{\sqrt{3}}\)

Question 11.
(i) If x = \(\frac{2 b t}{1+t^2}\) and y = \(\frac{a\left(1-t^2\right)}{1+t^2}\), find \(\frac{d y}{d x}\) at t = 2.
(ii) If x = aeθ (sin θ – cos θ) and y = aeθ (sin θ + cos θ), find \(\frac{d y}{d x}\) at θ = \(\frac{\pi}{4}\).
Solution:
Given x = \(\frac{2 b t}{1+t^2}\)
and y = \(\frac{a\left(1-t^2\right)}{1+t^2}\)
Diff. both equations w.r.t. t ; we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10 2

(ii) Given x = a eθ (sin θ – cos θ) ……………..(1)
and y = a eθ (sin θ + cos θ)
diff. eqn. (1) w.r.t. θ ; we have
\(\frac{d x}{d \theta}\) = a eθ (sin θ – cos θ) + a eθ (cos θ + sin θ)
= a eθ (sin θ – cos θ + cos θ + sin θ)
= 2aeθ sin θ
and y = aeθ (sin θ + cos θ) ………….(2)
diff. eqn. (2) w.r.t. θ ; we have
\(\frac{d y}{d \theta}\) = aeθ (sin θ + cos θ) + aeθ (cos θ – sin θ)
= aeθ (sin θ + cos θ + cos θ – sin θ)
= 2aeθ cos θ
∴ \(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\)
= \(\frac{2 a e^\theta \cos \theta}{2 a e^\theta \sin \theta}\)
= cot θ
at θ = \(\frac{\pi}{4}\) ;
\(\frac{d y}{d x}\) = cot \(\frac{\pi}{4}\) = 1.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 12.
(i) \(\frac{x^2}{1-x^2}\) w.r.t. x2
(ii) sin x2 w.r.t. x3 (ISC 2009)
(iii) cot3 (2x + 1) w.r.t. x2 + 1
(iv) sin2 x w.r.t. ecos x
Solution:
(i) Let y = \(\frac{x^2}{1-x^2}\)
and z = x2
So we want to differentiate y w.r.t. i.e. we want to find \(\frac{d y}{d z}\)
Diff. given eqns w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\left(1-x^2\right) 2 x-x^2(-2 x)}{\left(1-x^2\right)^2}\)
= \(\frac{2 x}{\left(1-x^2\right)^2}\)
and \(\frac{d z}{d x}\) = 2x
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{2 x}{\frac{\left(1-x^2\right)^2}{2 x}}\)
= \(\frac{1}{\left(1-x^2\right)^2}\)

(ii) Let y = sin x2
and z = x3
So we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
Diff. both eqn’s w.r.t. x : we have
\(\frac{d y}{d x}\) = cos x2 . 2x ;
\(\frac{d z}{d x}\) = 3x2
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{2 x \cos x^2}{3 x^2}\)
= \(\frac{2}{3 x}\) cos x2

(iii) Let y = cot3 (2x + 1)
and z = x2 + 1
So, we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\).
Diff. given eqn’s both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = 3 cot2 (2x + 1) {- cosec2 (2x + 1)} . 2
and \(\frac{d z}{d x}\) = 2x
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{-6 \cot ^2(2 x+1) \ {cosec}^2(2 x+1)}{2 x}\)
= \(\frac{-3 \cot ^2(2 x+1) \ {cosec}^2(2 x+1)}{x}\)

(iv) Let y = sin2 x ………….(1)
and z = ecos x
We want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
diff. eqn. (1) and eqn. (2) w.r.t. x ;
\(\frac{d y}{d x}\) = 2 sin x cos x ;
\(\frac{d z}{d x}\) = ecos x (- sin x)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{2 \sin x \cos x}{e^{\cos x}(-\sin x)}\)
= – \(\frac{2 \cos x}{2^{\cos x}}\)

Question 8 (old).
(iv) log (sin x) w.r.t. \(\sqrt{cos x}\)
Solution:
Given, y = log (sin x)
and z = \(\sqrt{cos x}\)
i.e. we want diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
Now, diff. both eqn’s w.r.t. x, we have
\(\frac{d y}{d x}\) = \(\frac{1}{sin x}\) cos x
= cot x
and \(\frac{d z}{d x}\) = \(\frac{1}{2}\) (cos x)\(-\frac{1}{2}\) .(- sin x)
= – \(\frac{\sin x}{2 \sqrt{\cos x}}\)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{2 \cot x}{-\sin x}\) \(\sqrt{cos x}\)
= – 2 cot x cosec x \(\sqrt{cos x}\)

Question 13.
(i) Differentiate sin-1 \(\left(\frac{2 x}{1+x^2}\right)\) w.r.t. tan-1 x.
(ii) Differentiate tan-1 \(\left(\frac{2 x}{1-x^2}\right)\) w.r.t. tan-1 x.
Solution:
(i) Let y = sin-1 \(\left(\frac{2 x}{1+x^2}\right)\) ……….(1)
and z = tan-1 x
i.e. we want to find \(\frac{d y}{d z}\)
put x = tan θ in eqn. (1) ; we have
y = sin-1 \(\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right)\)
= sin-1 (sin 2θ)
= 2θ
= 2 tan-1 x
∴ \(\frac{d y}{d x}\) = \(\frac{2}{1+x^2}\)
and \(\frac{d z}{d x}\) = \(\frac{1}{1+x^2}\)
Thus, \(\frac{d y}{d z}=\frac{d y / d x}{d z / d x}\)
= \(\frac{2 / 1+x^2}{1 / 1+x^2}\)
= 2

(ii) Let y = tan-1 \(\left(\frac{2 x}{1-x^2}\right)\) …………….(1)
and z = tan-1 x ………(2)
i.e. we want to find \(\frac{d y}{d z}\)
put x = tan θ
⇒ θ = tan-1 x in eqn. (1) ; we have
∴ y = tan-1 \(\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)\)
⇒ y = tan-1 (tan 2θ)
= 2θ
= 2 tan-1 x
Thus \(\frac{d y}{d x}\) = \(\frac{2}{1+x^2}\)
and \(\frac{d z}{d x}\) = \(\frac{1}{1+x^2}\)
∴ \(\frac{d y}{d x}\) = 2.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 14.
Differentiate cos-1 \(\left(\frac{1}{\sqrt{1+t^2}}\right)\) w.r.t. sin-1 \(\left(\frac{t}{\sqrt{1+t^2}}\right)\).
Solution:
Let y = cos-1 \(\left(\frac{1}{\sqrt{1+t^2}}\right)\) ………..(1)
and z = sin-1 \(\left(\frac{t}{\sqrt{1+t^2}}\right)\)
putting t = tan θ
i.e. θ = tan-1 t in eqn (1), we have
y = cos-1 \(\left(\frac{1}{\sqrt{1+\tan ^2 \theta}}\right)\)
= cos-1 (cos θ)
⇒ y = θ = tan-1 t
Diff. w.r.t. t ; we have
∴ \(\frac{d y}{d t}=\frac{1}{1+t^2}\) ………..(3)
putting t = tan Φ i.e. Φ = tan-1 t, in eqn. (2) ; we have
z = sin-1 \(\left(\frac{\tan \phi}{\sec \phi}\right)\)
= sin-1 (sin Φ) = Φ
⇒ z = tan-1 t
Diff. both sides w.r.t. t, we get
∴ \(\frac{d z}{d t}=\frac{1}{1+t^2}\) ……………..(4)
Now, we want to diff. y w.r.t. z to find \(\frac{d y}{d z}\).
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d t}}{\frac{d z}{d t}}\)
= \(\frac{\frac{1}{1+t^2}}{\frac{1}{1+t^2}}\)
= 1 [using (3) and (4)]

Question 15.
(i) Differentiate sin-1 \(\left(\frac{2 x}{1+x^2}\right)\) w.r.t. cos-1 \(\left(\frac{1-x^2}{1+x^2}\right)\).
(ii) Differentiate tan-1 \(\left(\frac{3 x-x^3}{1-3 x^2}\right)\) w.r.t. tan-1 \(\frac{2 x}{1-x^2}\).
Solution:
(i) Let y = sin-1 \(\left(\frac{2 x}{1+x^2}\right)\) …………(1)
and z = cos-1 \(\left(\frac{1-x^2}{1+x^2}\right)\) …………(2)
i.e. we want to diff. y w.r.t. z to find \(\frac{d y}{d z}\)
To simplify eqn. (1) ;
we put x = tan θ
i.e. θ = tan-1 x
y = sin-1 \(1\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right)\)
= sin-1 (sin 2θ)
⇒ y = 2θ
= 2 tan-1 x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{2}{1+x^2}\) …………….(3)
To simplify eqn. (2)
we put x = tan Φ
i.e. Φ = tan-1 x
∴ z = cos-1 \(\left(\frac{1-\tan ^2 \phi}{1+\tan ^2 \phi}\right)\)
= cos-1 (cos 2Φ)
⇒ z = 2Φ = 2 tan-1 x
Diff. both sides w.r.t. x, we have
\(\frac{d z}{d x}=\frac{2}{1+x^2}\) ………………(4)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}}\)
= 1 [using eqn. (3) and eqn. (4)]

(ii) Let y = tan-1 \(\left(\frac{3 x-x^3}{1-3 x^2}\right)\) …………….(1)
and z = tan-1 \(\frac{2 x}{1-x^2}\) ……………(2)
i.e. we want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\).
Putting x = tan θ
⇒ θ = tan-1 x in eqn. (1)
and x = tan Φ
⇒ Φ = tan-1 x in eqn. (2) ; we have
∴ y = tan-1 \(\left(\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\right)\)
On differentiating both eqn.’s w.r.t. x, we have
∴ \(\frac{d y}{d x}=\frac{3}{1+x^2}\)
and \(\frac{d z}{d x}=\frac{2}{1+x^2}\)
Thus, \(\frac{d y}{d z}=\frac{d y / d x}{d z / d x}\)
= \(\frac{3}{1+x^2} \times \frac{1+x^2}{2}\)
= \(\frac{3}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 16.
(i) Differentiate tan-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) w.r.t. tan-1 x.
(ii) Differentiate tan-1 \(\left(\frac{\sqrt{1-x^2}}{x}\right)\) w.r.t. cos-1 (2x \(\sqrt{1-x^2}\)).
Solution:
(i) Let y = tan-1 \(\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) …………..(1)
and z = tan-1 x …………(2)
Now we want to find \(\frac{d y}{d z}\)
put x = tan θ in eqn. (1) ; we have
y = tan-1 \(\left(\frac{1-\cos \theta}{\sin \theta}\right)\)
= tan-1 \(\left(\frac{2 \sin ^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)\)
= tan-1 (tan \(\frac{\theta}{2}\))
⇒ y = \(\frac{\theta}{2}\)
= \(\frac{1}{2}\) tan-1 x
and z = tan-1 x
Diff. both given eqn’s w.r.t. x, we have
⇒ \(\frac{d y}{d x}=\frac{1}{2\left(1+x^2\right)}\)
and \(\frac{d z}{d x}=\frac{1}{1+x^2}\)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{\frac{1}{2\left(1+x^2\right)}}{\frac{1}{1+x^2}}\)
= \(\frac{1}{2}\)

(ii) Let y = tan-1 \(\left(\frac{\sqrt{1-x^2}}{x}\right)\) ………..(1)
and z = cos-1 (2x\(\sqrt{1-x^2}\)) ………………(2)
Put x =sin θ
i.e. θ = sin-1 x in eqn. (1) ; we have
y = tan-1 \(\left(\frac{\sqrt{1-\sin ^2 \theta}}{\sin \theta}\right)\)
= tan-1 (cot θ)
⇒ y = tan-1 (tan (\(\frac{\pi}{2}\) – θ))
⇒ y = \(\frac{\pi}{2}\) – θ
= \(\frac{\pi}{2}\) – sin-1 x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^2}}\) ………..(3)
putting x = sin Φ i.e. Φ = sin-1 x in eqn. (2) ; we have
∴ z = cos-1 (2 sin Φ \(\sqrt{1-\sin ^2 \phi}\))
= cos-1 (2 sin Φ cos Φ)
z = cos-1 (sin 2Φ)
= cos-1 (cos (\(\frac{\pi}{2}\) – 2Φ))
z = \(\frac{\pi}{2}\) – 2Φ
= \(\frac{\pi}{2}\) – sin-1 x
Diff. both sides w.r.t. x ; we have
\(\frac{d z}{d x}=-\frac{2}{\sqrt{1-x^2}}\) ……………..(4)
We want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{-\frac{1}{\sqrt{1-x^2}}}{\frac{-2}{\sqrt{1-x^2}}}\)
= \(\frac{1}{2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 17.
Prove that the derivative of tan-1 \(\left(\frac{x}{1+\sqrt{1-x^2}}\right)\) w.r.t. sin-1 x is independent of x.
Solution:
Let y = tan-1 \(\left(\frac{x}{1+\sqrt{1-x^2}}\right)\) ………..(1)
and z = sin-1 x
Now we want to diff. y w.r.t. z
Put x = sin θ
∴ θ = sin-1 x in eqn. (1) ; we have
y = tan-1 \(\left(\frac{\sin \theta}{1+\cos \theta}\right)\)
= tan-1 \(\left(\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}\right)\)
⇒ y = tan-1 (tan \(\frac{\theta}{2}\))
= \(\frac{\theta}{2}\)
= \(\frac{1}{2}\) sin-1 x
Diff. both sides w.r.t. x, we have
Thus \(\frac{d y}{d x}\) = \(\frac{1}{2} \frac{1}{\sqrt{1-x^2}}\)
Diff. eqn. (2) w.r.t. x
\(\frac{d z}{d x}=\frac{1}{\sqrt{1-x^2}}\)
∴ \(\frac{d y}{d z}=\frac{d y / d x}{d z / d x}\)
= \(\frac{1}{2 \sqrt{1-x^2}} \times \sqrt{1-x^2}\)
= \(\frac{1}{}2\)
∴ \(\frac{d y}{d z}\) is independent of x.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.10

Question 18.
Differentiate xx w.r.t. x log x.
Solution:
Let y = xx ………..(1)
and z = x log x ………..(2)
We want to diff. y w.r.t. z i.e. to find \(\frac{d y}{d z}\)
Taking logarithm on both sides of eqn. (1) we have
log y = x log x ;
diff. both sides w.r.t. x ; we have
\(\frac{1}{y} \frac{d y}{d x}\) = x × \(\frac{1}{x}\) + log x . 1
⇒ \(\frac{d y}{d x}\) = xx [1 + log x] ………..(3)
Diff. eqn. (2) w.r.t. x ; we have
\(\frac{d z}{d x}\) = x × \(\frac{1}{x}\) + log x . 1
= 1 + log x
∴ \(\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}\)
= \(\frac{x^x(1+\log x)}{1+\log x}\)
= xx.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Utilizing Understanding ISC Mathematics Class 12 Solutions Chapter 5 Continuity and Differentiability Ex 5.8 as a study aid can enhance exam preparation.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Differentiate the following (1 to 6) functions w.r.t. x:

Question 1.
(i) ex + 3 sin x
(ii) 10x + \(\frac{1}{3}\) ex – 2 log x
Solution:
(i) Let y = ex + 3 sin x ;
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = ex + 3 cos x

(ii) Let y = 10x + \(\frac{1}{3}\) ex – 2 log x
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}\) = 10x log 10 + \(\frac{1}{3}\) ex – \(\frac{2}{x}\)

Question 2.
(i) e-x (NCERT)
(ii) sin (log x), x > 0 (NCERT)
Solution:
(i) Let y = e-x ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = – e-x

(ii) Let y = sin (log x), x > 0
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = cos (log x) \(\frac{d}{d x}\) log x
= \(\frac{\cos (\log x)}{x}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 3.
(i) ecos x (NCERT)
(ii) esin-1 x (NCERT)
Solution:
(i) Let y = ecos x
On differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = ecos x \(\frac{d}{d x}\) (cos x)
= ecos x (- sin x)

(ii) Let y = esin-1 x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = esin-1 x \(\frac{d}{d x}\) (sin-1 x)
= esin-1 x \(\frac{1}{\sqrt{1-x^2}}\)

Question 4.
(i) ex3 (NCERT)
(ii) \(\sqrt{e^{\sqrt{x}}}\), x > 0
Solution:
(i) Let y = ex3 ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = ex3 \(\frac{d}{d x}\) x3
= ex3 . 3x2

(ii) Let y = \(\sqrt{e^{\sqrt{x}}}\), x > 0
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sqrt{x}}\right)^{1 / 2}\)
= \(\frac{1}{2}\left(e^{\sqrt{x}}\right)^{\frac{1}{2}-1} \frac{d}{d x} e^{\sqrt{x}}\)
= \(\frac{1}{2 \sqrt{e^{\sqrt{x}}}} e^{\sqrt{x}} \frac{1}{2 \sqrt{x}}\)
= \(\frac{e^{\sqrt{x}}}{4 \sqrt{x} \sqrt{e^{\sqrt{x}}}}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 5.
(i) log (log x), x > 1 (NCERT)
(ii) log7 (log x), x > 1 (NCERT)
Solution:
(i) Let y = log (log x), x > 1
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\) log (log x)
= \(\frac{1}{\log x}\) \(\frac{d}{d x}\) (log x)
= \(\frac{1}{x \log x}\)

(ii) Let y = log7 (log x)
Differentiating both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\log (\log x)}{\log 7}\right)\)
= \(\frac{1}{\log 7} \frac{1}{\log x} \frac{1}{x}\)
= \(\frac{1}{x \log x \log 7}\)

Question 6.
(i) log (cos ex) (NCERT)
(ii) tan-1 (esin x)
Solution:
(i) Let y = log (cos ex) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = \(\frac{1}{\cos e^x}\) \(\frac{d}{d x}\) cos ex
= \(\frac{1}{\cos e^x}\) (- sin ex) \(\frac{d}{d x}\) ex
= – ex tan (ex)

(ii) Let y = tan-1 (esin x)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = \(\frac{1}{1+\left(e^{\sin x}\right)^2} \frac{d}{d x}\) esin x
= \(\frac{1}{1+e^{2 \sin x}}\) esin x . cos x

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 7.
Is the function f(x) = log (2x – 1) derivable at x = 0?
Solution:
(i) Given f(x) = log (2x – 1)
for domain of f : f(x) must be a real number
⇒ log (2x – 1) must be a real number
⇒ 2x – 1 > 0
⇒ x > \(\frac{1}{2}\)
∴ Df = (\(\frac{1}{2}\), ∞).

Question 8.
If f(x) = log (log x), find f'(e).
Solution:
Given f(x) = log (log x) ;
Diff. both sides w.r.t. x, we have
f'(x) = \(\frac{1}{\log x} \cdot \frac{1}{x}\)
∴ f'(e) = \(\frac{1}{\log e} \cdot \frac{1}{e}\)
= \(\frac{1}{e \log e}\)
= \(\frac{1}{e \times 1}=\frac{1}{e}\)

Question 9.
If y = log (tan x), show that \(\frac{d y}{d x}\) = 2 cosec 2x.
Solution:
Let y = log (tan x) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=-\frac{1}{\tan x}\) sec2 x
= \(\frac{1}{\frac{\sin x}{\cos x} \times \cos ^2 x}\)
= \(\frac{2}{\sin 2 x}\)
\(\frac{d y}{d x}\) = 2 cosec 2x.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 10.
If f(1) = 4 and f'(1) = 2, find the value of the derivative of log f(ex) w.r.t. x at x = 0.
Solution:
Let y = log f(ex)
Differentiating w.r.t. x, we have
\(\frac{d y}{d x}=\frac{1}{f\left(e^x\right)} \frac{d}{d x}\) f(ex)
= \(\frac{f^{\prime}\left(e^x\right)}{f\left(e^x\right)}\) × ex
at x = 0,
\(\frac{d y}{d x}=\frac{f^{\prime}(1)}{f(1)}\) × e0
= \(\frac{2}{4}=\frac{1}{2}\)
[Since f'(1) = 2 and f(1) = 4]

Question 11.
If f(x) = ex g(x), g(0) = 2 and g'(0) = 1, then find f'(0).
Solution:
Given f(x) = ex g(x)
Diff. both sides w.r.t. x, we have
f'(x) = ex g'(x) + g(x) ex …………….(1)
putting x = 0 in eqn. (1) ; we have
f'(0) = e0 g'(0) + g(0) e0
= g'(0) + g(0)
= 1 + 2 = 3
[∵ g(0) = 2 and g'(0) = 1]

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Differentiate the following functions w.r.t. x :

Question 12.
(i) \(\frac{\mathcal{e}^x}{\sin x}\)
(ii) \(\frac{e^x}{1+\sin x}\).
Solution:
(i) Let y = \(\frac{\mathcal{e}^x}{\sin x}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\sin x \frac{d}{d x} e^x \frac{d}{d x} \sin x}{\sin ^2 x}\)
[using quotient rule]
= \(\frac{(\sin x) e^x-e^x \cos x}{\sin ^2 x}\)
= \(\frac{e^x(\sin x-\cos x)}{\sin ^2 x}\)

(ii) Given y = \(\frac{e^x}{1+\sin x}\) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{(1+\sin x) e^x-e^x \cos x}{(1+\sin x)^2}\)
= \(\frac{e^x(1+\sin x-\cos x)}{(1+\sin x)^2}\)

Question 13.
(i) 2x tan-1 x – log (1 + x2)
(ii) \(\frac{\cos x}{\log x}\), x > 0 (NCERT)
Solution:
(i) Let y = 2x tan-1 x – log (1 + x2)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = 2 [x . \(\frac{1}{1+x^2}\) + tan-1 x . 1] – \(\frac{2 x}{1+x^2}\)
= 2 tan-1 x

(ii) Let y = \(\frac{\cos x}{\log x}\), x > 0
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\log x \frac{d}{d x} \cos x-\cos x \frac{d}{d x} \log x}{(\log x)^2}\) [quotient rule]
= \(\frac{-\sin x \log x-\frac{\cos x}{x}}{(\log x)^2}\)
= \(\frac{-x \sin x \log x+\cos x}{x(\log x)^2}\)

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 14.
(i) esec x2 + 3 cos-1 x (NCERT)
(ii) ex + ex2 + ………….. + ex5.
Solution:
(i) Let y = esec x2 + 3 cos-1 x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = esec x2 \(\frac{d}{d x}\) sec2 x + \(\frac{d}{d x}\) 3 cos-1 x
= esec x2 (2 sec x) \(\frac{d}{d x}\) sec x + 3 \(\left(\frac{-1}{\sqrt{1-x^2}}\right)\)
= 2 sec2 x tan x esec2 x – \(\frac{3}{\sqrt{1-x^2}}\)

(ii) Let y = ex + ex2 + ………….. + ex5
i.e. y = ex + ex2 + ex3 + ex4 + ex5
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = ex + ex2 \(\frac{d}{d x}\) x2 + ex3 \(\frac{d}{d x}\) x3 + ex4 \(\frac{d}{d x}\) x4 + ex5 \(\frac{d}{d x}\) x5
= ex + 2x ex2 + 3x2 ex3 + 4x3 ex4 + 5x4 ex5

Question 15.
(i) \(\frac{5^x \log x}{x^2+1}\)
(ii) cos (log x + ex). (NCERT)
Solution:
(i) Let y = \(\frac{5^x \log x}{x^2+1}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\left(x^2+1\right) \frac{d}{d x}\left(5^x \log x\right)-\left(5^x \log x\right) \frac{d}{d x}\left(x^2+1\right)}{\left(x^2+1\right)^2}\)
= \(\frac{\left(x^2+1\right)\left(\frac{5^x}{x}+\log x \cdot 5^x \log 5\right)-\left(5^x \log x\right) 2 x}{\left(x^2+1\right)^2}\)
= \(\frac{5^x\left[\left(x^2+1\right)(1+x \log 5 \cdot \log x)-2 x^2 \log x\right]}{x\left(x^2+1\right)^2}\)

(ii) Let y = cos (log x + ex)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = – sin (log x + ex) . \(\frac{d}{d x}\) (log x + ex)
= – sin (log x + ex) (\(\frac{1}{x}\) + ex)
∴ \(\frac{d y}{d x}\) = – \(\frac{1}{x}\) sin (log x + ex) (1 + x ex).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 16.
(i) log \(\left(\frac{x+\sqrt{x^2-a^2}}{x-\sqrt{x^2-a^2}}\right)\)
(ii) log \(\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)\)
Solution:
(i) Let y = log \(\left(\frac{x+\sqrt{x^2-a^2}}{x-\sqrt{x^2-a^2}}\right)\)
Diff. both sides w.r.t. x, we have

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8 1

(ii) y = log \(\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)\)
= \(\frac{1}{2}\) [log (1 – cos x) – log (1 + cos x)]
[∵ log ab = b log a ;
log \(\frac{a}{b}\) = log a – log b]
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{1}{2}\left[\begin{array}{c}
\frac{1}{1-\cos x}(+\sin x) \\
-\frac{1}{1+\cos x}(-\sin x)
\end{array}\right]\)
= \(\frac{1}{2}\left[\frac{\sin x(1+\cos x+1-\cos x)}{(1-\cos x)(1+\cos x)}\right]\)
= \(\frac{\sin x}{1-\cos ^2 x}\)
= \(\frac{\sin x}{\sin ^2 x}\)
= cosec x.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 17.
(i) ecot-1 x2
(ii) x \(\sqrt{1+x^2}\) + log (x + \(\sqrt{x^2+1}\)).
Solution:
(i) Let y = ecot-1 x2 ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}\) = ecot-1 x2 \(\frac{d}{d x}\) cot-1 x2
= ecot-1 x2 \(\left\{\frac{-1}{1+\left(x^2\right)^2} \times 2 x\right\}\)
= – \(\frac{2 x e^{\cot ^{-1} x^2}}{1+x^4}\)

(ii) Let y = x \(\sqrt{1+x^2}\) + log (x + \(\sqrt{x^2+1}\))
Diff. both sides w.r.t. x, we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8 2

Question 18.
(i) If y = \(\frac{\log \left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}\), prove that (x2 + 1) \(\frac{d y}{d x}\) + xy = 1.
(ii) If y = e2 log x + 3x, prove that \(\frac{d y}{d x}\) = x (2 + 3x) e3x.
Solution:
(i) Given y \(\sqrt{x^2+1}\) = log (\(\sqrt{x^2+1}\) + x)
Differentiating both sides w.r.t. x ; we get

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8 3

⇒ xy + (x2 + 1) \(\frac{d y}{d x}\) = 1
⇒ (x2 + 1) \(\frac{d y}{d x}\) + xy = 1.

(ii) Let y = e2 log x + 3x
= e2 log x . e3x
= elog x2 e3x
⇒ y = x2 e3x . 3 + e3x . 2x
= e3x (2 + 3x) x.

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 19.
Differentiate tan-1 \(\left(\frac{2^{x+1}}{1-4^x}\right)\) w.r.t. x.
Solution:
Let y = tan-1 \(\left(\frac{2^{x+1}}{1-4^x}\right)\)
= tan-1 \(\left(\frac{2 \times 2^x}{1-\left(2^x\right)^2}\right)\)
put 2x = tan θ
i.e. θ = tan-1 (2x)
Then y = tan-1 \(\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)\)
⇒ y = tan-1 (tan 2θ) = 2θ
⇒ y = 2 tan-1 (2x) ;
Diff. both sides w.r.t. x, we get
\(\frac{d y}{d x}=\frac{2}{1+\left(2^x\right)^2} \frac{d}{d x}\) (2x)
= \(\frac{2}{1+2^{2 x}}\) 2x log 2
= \(\frac{2^{x+1} \log 2}{1+4^x}\).

Question 20.
Find \(\frac{d y}{d x}\) when
(i) xy + xe-y + yex = x2
(ii) ex-y = log \(\left(\frac{x}{y}\right)\)
Solution:
(i) Given, xy + xe-y + yex = x2 …………..(1)
Diff. eqn. (1) w.r.t. x, taking y as a function of x, we have
x \(\frac{d}{d x}\) + y . 1 + x e-y (- \(\frac{d y}{d x}\)) + e-y + y ex + ex \(\frac{d y}{d x}\) = 2x
⇒ [x – xe-y + ex] \(\frac{d y}{d x}\) = 2x – y ex – e-y – y
∴ \(\frac{d y}{d x}\) = \(\frac{2 x-y e^x-e^{-y}-y}{x+e^x-x e^{-y}}\)

(ii) Given ex-y = log \(\left(\frac{x}{y}\right)\)
Diff. eqn. (1) both sides w.r.t. x, we have
\(e^{x-y}\left[1-\frac{d y}{d x}\right]=\frac{1}{x}-\frac{1}{y} \frac{d y}{d x}\)
⇒ \(\left[\frac{1}{y}-e^{x-y}\right] \frac{d y}{d x}=\frac{1}{x}-e^{x-y}\)
⇒ \(\frac{\left[1-y e^{x-y}\right]}{y} \frac{d y}{d x}=\left[\frac{1-x e^{x-y}}{x}\right]\)
⇒ \(\frac{d y}{d x}=\frac{y\left(1-x e^{x-y}\right)}{x\left(1-y e^{x-y}\right)}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 21.
If log (x2 + y2 = 2 tan-1 \(\frac{y}{x}\), show that \(\frac{d y}{d x}=\frac{x+y}{x-y}\).
Solution:
Given, log (x2 + y2 = 2 tan-1 \(\frac{y}{x}\)
diff. both sides w.r.t. x ; we have
\(\frac{1}{x^2+y^2}\left[2 x+2 y \frac{d y}{d x}\right]=\frac{2}{1+\frac{y^2}{x^2}}\left[\frac{x \frac{d y}{d x}-y \cdot 1}{x^2}\right]\)
⇒ \(\frac{1}{x^2+y^2}\left[x+y \frac{d y}{d x}\right]=\frac{1}{x^2+y^2}\left[x \frac{d y}{d x}-y\right]\)
⇒ (y – x) \(\frac{d y}{d x}\) = – x – y
⇒ \(\frac{d y}{d x}\) = \(\frac{x+y}{x-y}\).

Question 22.
If y log x = x – y, prove that \(\frac{d y}{d x}\) = \(\frac{\log x}{(1+\log x)^2}\).
Solution:
Given y log x = x – y
⇒ y (1 + log x) = x
⇒ y = \(\frac{x}{1+\log x}\) ;
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{(1+\log x) \frac{d}{d x} x-x \frac{d}{d x}(1+\log x)}{(1+\log x)^2}\)
\(\frac{d y}{d x}=\frac{(1+\log x) \cdot 1-x\left(0+\frac{1}{x}\right)}{(1+\log x)^2}\)
= \(\frac{1+\log x-1}{(1+\log x)^2}\)
⇒ \(\frac{d y}{d x}=\frac{\log x}{(1+\log x)^2}\).

ML Aggarwal Class 12 Maths Solutions Section A Chapter 5 Continuity and Differentiability Ex 5.8

Question 23.
Differentiate the following functions w.r.t. x :
(i) logx (2x – 3)
(ii) logcos x sin x.
Solution:
(i) Let y = logx (2x – 3)
= \(\frac{\log (2 x-3)}{\log x}\)
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\left[(\log x) \frac{d}{d x} \log (2 x-3)-\log (2 x-3) \frac{d}{d x} \log x\right]}{(\log x)^2}\)
= \(\frac{\left[\log x \cdot \frac{2}{2 x-3}-\frac{\log (2 x-3)}{x}\right]}{(\log x)^2}\)
= \(\left[\frac{2 x \log x-(2 x-3) \log (2 x-3)}{(2 x-3) x(\log x)^2}\right]\).

(ii) Let y = logcos x sin x
Diff. both sides w.r.t. x, we have
\(\frac{d y}{d x}=\frac{\log \cos x \frac{d}{d x}(\log \sin x)-\log \sin x \frac{d}{d x} \log \cos x}{[\log \cos x]^2}\)
= \(\frac{\log \cos x \cdot \frac{\cos x}{\sin x}-(\log \sin x) \cdot\left(-\frac{\sin x}{\cos x}\right)}{(\log \cos x)^2}\)
= \(\frac{\cot x \log \cos x+\tan x \log \sin x}{(\log \cos x)^2}\).